Course program and reading list
Semester 1 Year 2020

School: Efi Arazi School of Computer Science M.Sc.

Advanced Data Structures

Lecturer:
Prof. Shay Mozes   smozes@idc.ac.il

Teaching Assistant:
Mr. Omri Puny   omri.puny@post.idc.ac.il

Course No.: 3581  Course Type : Elective  Weekly Hours : 3  Credit: 3

Course Requirements : Final Exam  Group Code : 201358101  Language: Hebrew

Prerequisites

Prerequisite:
52 - Calculus I
53 - Calculus II
54 - Linear Algebra I
55 - Linear Algebra II
56 - Discrete Mathematics
59 - Data Structures
69 - Logic And Set Theory
77 - Algorithms
417 - Introduction To Computer Science
Course Description

This is a theoretical class on data structures intended for students who already took the basic data structures and algorithms classes. The class emphasizes design and analysis of data structures with good worst case behavior. Topics may include: amortized analysis, integers (predecessor search, sorting), heaps (binomial, Fibonacci), hashing (perfect, universal), self-adjusting data structures (lists, splay trees), search trees, dynamic trees (link-cut trees), dynamic graphs (connectivity), string matching (tries, suffix trees/arrays), range-minimum queries, least common ancestor,

This is a graduate level class. Mathematical maturity is assumed, and students will be required to fill in some details on their own based on principles learned in class.

Homework will include up to 6 theoretical problem sets, to be handed in individually.

Course Goals

This class will expose students in detail to data structures and techniques that are not covered in the basic data structures course. Another important goal is to enhance the analysis and formal argument skills of the students.

Grading

final exam 50%
homework - 25%
scribe notes - 25%

Learning Outcomes

The students will be able to choose appropriate data structures for given problems.

The students will be able to formally analyze sophisticated data structures

Lecturer Office Hours

Monday 17:15 - 18:15 C.126 or by appointment
Reading List

The course does not follow a single book. Some of the material appears in Introduction to algorithms / Cormen, Leiserson, Rivest and Stein (3/4th edition), MIT press. For some of the topics references to the relevant papers will be supplied.