hocnit hakuros wrosimah
koreh lekoreh
msoter 2 shen 2022

biat spfr: bin spfr apfi arzi lemdui hymshav. B.Sc

nachmi goronim

merimim: hor:
yael@idc.ac.il

merimim: hor:
maya.yaish@post.idc.ac.il

guy.kornowski@post.idc.ac.il

elad.tzalic@post.idc.ac.il

merimim: hor:
yael.hitron@post.idc.ac.il

guy.kornowski@post.idc.ac.il

gilad.battat@post.idc.ac.il

merimim: hor:
Aviad.Baron@post.idc.ac.il

elad.tzalic@post.idc.ac.il
As the saying goes, “good data structures and bad code are much better than the other way around”. Indeed, in order to solve challenging problems in an efficient and elegant manner, one must organize one’s data in a suitable form, called data structure. Data structures are an essential area of study and practice for computer scientists and serious software developers. The course presents and analyzes classical data structures and related algorithms. In particular, we will learn how to assess the performance of various algorithms for searching, sorting, and manipulating data. We will learn widely-used data structures such as lists, stacks, queues, various trees, and hash tables. In addition, we will then learn the relations between the data structures used and the efficiency of the algorithms using them.

List of subjects to be covered

Time & space complexity: Best case, worst case, average case, and amortize case. We will use O, Ω, Θ bounds

List of Data structures: Linked list, Stack, queue, Binary Heap, Binary search tree, binary search tree with augmented data (e.g., interval tree), AVL trees, B-trees, Hash table, upside-down forest (Disjoint Union / Find

Algorithms: In addition to the algorithms related to the data structures, we will also learn comparison based sorting algorithms (heap sort, quick sort, merge sort), linear sorting algorithms (radix sort, counting sort and bucket sort), ordered statistics algorithms, and the median-of-median algorithm

Lower bounds: we will prove the lower bound of comparison based algorithm
The goal of the course is to learn basic data structure and classic sorting algorithms. We will learn formal analysis of the complexity of various algorithms. In addition, we will learn how to choose a data structure for a given task.

If final exam < 60
then
grade = fail
else

grade = 0.1 * HW + 0.9 * final exam

Note: all assignments will be considered.

:Learn

- Abstract data type
- Basic data structures
- Basic sorting algorithms
- Space & time analysis of algorithms
- Lower bound proof
- How to choose a data structure for a given task
- How to modify a data structure for a given task
- Implement data structures

TBA

TBA
International classes: Yael Hitron

Hebrew classes: Guy Kornowski, Elad Tzalic, Maya Goldner

Textbook

(Introduction to Algorithms by Cormen, Leiserson, Rivest and Stein. (CLRS

(A Hebrew translation exists (by Open univ