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Abstract

We show that the relationship between aggregate investment and Tobin’s q

has become remarkably tight in recent years, contrasting with earlier times. We

connect this change with the growing empirical dispersion in Tobin’s q, which

we document both in the cross-section and the time-series. To study the source

of this dispersion, we augment a standard investment model with learning.

Information acquisition endogenously amplifies volatility in the firm’s value

function. Perhaps counterintuitively, the investment-q regression works better

for research-intensive industries, a growing segment of the economy, despite

their greater stock of intangible assets. We confirm the model’s predictions in

the data, and we disentangle our learning mechanism from measurement error

in q.
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1 Introduction

The q theory of investment predicts a strong relationship between corporations’ mar-

ket values and their investment rates. Hayashi (1982) provides justification for mea-

suring marginal q with a valuation ratio, average q or Tobin’s q, so that a simple

regression of investment on Tobin’s q should have a strong fit. Researchers have

found that this regression in fact performs quite poorly. While the Hayashi model

assumptions may not hold exactly in the data, a stark disconnect between invest-

ments and valuations is deeply puzzling to financial economists. A large literature

investigates the potential reasons why Tobin’s q does not explain investment well

in the data, pointing to the existence of financial constraints, decreasing returns to

scale, inefficient equity-market valuations, and measurement problems, among other

things.1

Curiously, even as this literature has continued to grow, the stylized fact has

changed. Using data from the NIPA tables combined with the Fed Flow of Funds,

we document that the aggregate investment-q regression has worked remarkably well

in recent years. The simple regression achieves an R2 of 70% during 1995–2015,

comparable to the empirical performances of the bond price q regression proposed

in Philippon (2009) and the total tangible and intangible investment-q regression

in Peters and Taylor (2017). If one were to test the simple theory using data from

recent years, one would conclude that the q theory of investment is in fact an empirical

success.

Yet this recent development only deepens the puzzle, as problems with q theory

highlighted by the literature seem to have worsened in recent years. For example, Pe-

ters and Taylor (2017) focuses on the failure to measure intangible assets, which have

grown substantially in the aggregate, and Philippon (2009) focuses on measuring q

via bond markets to avoid relying on equity market valuations, which are increasingly

volatile and may seem unreliable. We show that, counterintuitively, it is precisely the

growing volatility in valuations, especially in intangible-intensive industries, that has

contributed to the revived empirical performance of the classic regression.

To explain these recent developments, we propose a learning-based model of cor-

porate investment. The model endogenously produces more variation in marginal

1For examples, see Fazzari, Hubbard, and Petersen (1988), Gilchrist and Himmelberg (1995),
Kaplan and Zingales (1997), Erickson and Whited (2000), Gomes (2001), Cooper and Ejarque
(2003), Moyen (2004), Philippon (2009), Eberly (2011), and Peters and Taylor (2017).
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q. This learning-induced variation is informative about the firm’s investment policy.

The main result is that the investment-q regression works better when there is more

endogenous variation in the regressor q. This provides a simple, yet previously unex-

plored explanation behind the poor fit of the regression. The culprit is the historically

low variation in Tobin’s q relative to residual factors affecting investment.

To motivate the intuition empirically, we establish several stylized facts. First,

the volatility of aggregate q in the data is higher precisely during the years when the

aggregate investment-q regression performs better. Second, the between- and within-

firm variation of Tobin’s q in Compustat have both risen steeply since the late 1990s.

Finally, the panel version of the investment-q regression also fits much better when

Tobin’s q is more volatile. These stylized facts support our intuition: the empirical

performance of the theory hinges critically on the amount of endogenous variation

that one finds in Tobin’s q.

Turning to the model, we study a standard q-theoretic investment framework,

most closely resembling the model of Abel (2017). Our main innovation is to embed

learning about uncertain cash-flow growth. Specifically, we assume that the expected

cash-flow growth evolves over time, and the firm can never fully learn. We then allow

the firm to acquire, at a cost, informative signals about the time-varying cash-flow

growth. These features provide a theoretical foundation for the stochastic variation

in marginal q under incomplete information. We show that learning endogenously

amplifies the volatility of marginal q, thereby improving the fit of the investment-q

regression.

Importantly, uncertainty and volatility in the firm’s valuation are distinct con-

cepts. When signals are more informative, there is lower uncertainty about future

cash-flow growth at any given moment; but by the same token, beliefs become more

volatile as they are more aggressively updated from one moment to the other. Fur-

thermore, we show that firms endogenously choosing more informative signals are

the ones facing greater fundamental uncertainty about their cash flows. Thus, more

uncertain environments lead to more learning, which in turn endogenously lowers

a firm’s cash-flow uncertainty but amplifies volatility in Tobin’s q. The learning-

induced volatility is not noise, but rather is statistically informative about the firm’s

investment policy.

An empirical implication is that firms investing more in learning—in the form

of research—should feature a tighter fit between investment and Tobin’s q. At first
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glance, this prediction seems counterintuitive because research creates an intangible

asset, and therefore a measurement error when accounting only for tangible capital

in Tobin’s q as discussed in Peters and Taylor (2017). Our model abstracts from this

measurement error, and our empirical findings point to a large offsetting effect.

In the cross-section of firms in Compustat, industries featuring greater investment

in research and development, higher rates of patenting, and greater intangibility have

noticeably higher R2 values in their investment-q panel regressions compared to those

from the average industry. This stylized fact is documented in Peters and Taylor

(2017) and earmarked as a puzzle. Our model provides an explanation, by predicting

that research-intensive firms exhibit greater volatility in Tobin’s q. We confirm that

the better fit in high-tech industries was present even before the aggregate regression

fit began to improve, so it is not driven simply by the fact that these firms are more

common later in the sample. As high-tech firms have become a larger segment of the

economy, their greater endogenous volatility in Tobin’s q has caused the aggregate

regression to improve.

We investigate other predictions of the learning model. The model predicts that

the investment-q regression works better in settings where Tobin’s q is less correlated

with cash flow. With learning, q becomes less responsive to cash flow because the firm

chooses to pay more attention to other signals. This learning mechanism works in

the opposite direction as misspecification issues, which have been the focus in much

of the prior research. When a theory calls for an important role for cash flow beyond

the information captured by Tobin’s q, excluding cash flow from the regression would

create an omitted variable bias. With such a bias, the investment-q regression would

work better in settings where Tobin’s q is more, not less, correlated with cash flow,

as the bias shrinks when q and cash flow are more highly correlated.

To test the relative importance of the learning mechanism against this potential

misspecification, we estimate two fixed-effects panel regressions within each industry:

a regression of Tobin’s q on cash flow, and the standard regression of investment on

Tobin’s q. We find that the R2 values from these regressions are negatively correlated

across industries. The investment-q regression fits best in industries where the q-cash

flow regression fits the worst. This pattern supports the learning mechanism. While it

does not rule out the possibility of misspecification, it does suggest that the empirical

effects of the misspecification are outweighed by the learning mechanism.

In sum, we find that the classic q theory of investment works surprisingly well in

3



recent years, and counterintuitively it works best for firms with high volatilities in

equity valuations, high levels of R&D investment, and low levels of tangibility. Our

findings have several general implications. They suggest that learning-based mod-

els may be particularly well-suited to study corporate investment behavior. They

also suggest that Tobin’s q, “arguably the most common regressor in corporate fi-

nance” (Erickson and Whited, 2012), may be a better empirical proxy for the firm’s

investment opportunities than previously thought.

An empirical paper closely related to ours is Peters and Taylor (2017). They

augment the simple investment-q regression by adjusting for intangible capital. While

we report results using the classic definitions of investment and q in keeping with the

previous literature, all results continue to hold when these quantities are adjusted for

intangibles with the “total” investment and q series (results available on request).

Another related empirical paper is Gutiérrez and Philippon (2016). They high-

light that aggregate investment has trended downward while aggregate Tobin’s q has

trended upward, a divergence they attribute to weakened competition and governance

in the US. Our analysis is mostly silent on the levels of investment and q, and focuses

instead on the correlations, which have improved in recent years. In the appendix,

we extend our learning model to demonstrate how greater market power generates

a lower Tobin’s q slope and yet a higher investment-q regression R2. Lindenberg

and Ross (1981) and Cooper and Ejarque (2003) also examine competition-related

implications on Tobin’s q.

Our paper builds on a long theoretical literature investigating the q theory of in-

vestment.2 The most closely related theory paper to ours is Abel (2017), to which we

add a learning mechanism. In our model, as in Alti (2003), Moyen and Platikanov

(2012), and Hennessy and Radnaev (2018), learning symmetrically and simultane-

ously occurs for the firm and the market alike. In contrast to our setting, many

papers study settings in which managers are assumed to possess superior information

compared to outsiders (e.g. Myers and Majluf, 1984), or the reverse channel in which

managers extract information from their stock prices when making investment deci-

sions.3 We choose the simple, symmetric learning framework as it is powerful enough

2Foundational contributions to Tobin’s q theory originate from Keynes (1936), Brainard and
Tobin (1968), Tobin (1969), Mussa (1977), Lindenberg and Ross (1981), Abel (1983), and Salinger
(1984), among many others.

3See Subrahmanyam and Titman (1999), Bresnahan, Milgrom, and Paul (1992), Dow and Gorton
(1997), Goldstein and Guembel (2008), and Edmans, Goldstein, and Jiang (2015), among others.
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to provide the empirical prediction of interest, namely that the fit of the investment-q

regression improves when firms are more engaged in research and learning.

Finally, our paper complements the recent literature showing that financial mar-

kets have become more informative in recent years. Bai, Philippon, and Savov (2016)

argue that the recent rise in price informativeness is due to greater information pro-

duction in financial markets. Chen, Goldstein, and Jiang (2007) and Bakke and

Whited (2010) document a stronger relationship between stock prices and investment

for firms with more informative stock prices, whereas Dow, Goldstein, and Guembel

(2017) demonstrate how the information production in financial markets can amplify

business cycles. The theoretical models of Farboodi, Matray, and Veldkamp (2017)

and Begenau, Farboodi, and Veldkamp (2017) describe how this rise in price infor-

mativeness affects capital allocation in the economy. In line with this growing body

of evidence, we document a remarkable improvement in the relationship between in-

vestment and q in recent years, and point to learning as a plausible explanation for

this trend.

The rest of the paper is organized as follows: Section 2 establishes the motivating

empirical facts related to the empirical dispersion in Tobin’s q and the fit of the

investment-q regression. Section 3 builds an investment model with learning that

endogenizes volatility in q and derives testable implications. Section 4 returns to the

data and investigates the implications of the model. Section 5 concludes.

2 Stylized empirical facts

2.1 Improved fit of the aggregate regression

We first document that the aggregate investment-q regression has performed much

better in recent years. Figure 1 plots and compares aggregate investment, and lagged

aggregate Tobin’s q, from 1975 to 2015. The figure is divided into two subperiods

of 20 years each. At the bottom of each subperiod is the R2 value that would be

obtained from the standard regression of aggregate investment rate on lagged q using

only the data from that subperiod. This regression is specified as

It+1

Kt

= α + βqt + εt, (1)
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where t indexes quarters, I is aggregate private nonresidential fixed investment, K

is aggregate gross stock of private nonresidential fixed assets, and q is measured as

the ratio of corporate financial value (value of outstanding equity and debt securities

less inventories) to the aggregate stock of corporate nonresidential fixed assets. To

construct these series, we use quarterly data from the Fed Flow of Funds and from

NIPA tables, following the steps described in Hall (2001) and Philippon (2009). More

details are provided in Appendix A.1.

[Figure 1 here]

The R2 from regression (1) has been the primary focus of the empirical literature

assessing the performance of the q theory of investment. During the first subperiod,

1975-1995, the relationship between aggregate investment and Tobin’s q is disappoint-

ingly weak, and the standard regression achieves an R2 of only 8%. This fact has been

widely confirmed, e.g., Philippon (2009), Table III (top panel, second column). As

a result, modern empirical research often describes the investment-q regression as an

empirical failure. Many papers attempt to improve the classic regression in various

ways, as discussed above. But in the second subperiod, 1995-2015, the investment-q

regression performs much better. From 1995-2015, the R2 is nearly 70%. Looking

only at the more recent past, one would conclude that the simple regression imple-

mentation of q theory is in fact a resounding success.

Figure 2 performs a similar analysis in differences. The solid blue and dashed red

series are the year-over-year differences of the series from Figure 1. The R2 values

from the regression within the two 20-year subperiods are listed at the bottom of

the figure, and they suggest the same conclusion as in Figure 1. The R2 of the

investment-q regression rose from less than 1% in 1975-1995 to greater than 48% in

1995-2015.

[Figure 2 here]

Also listed at the bottom of each subperiod in Figure 2 are the volatilities of the

explanatory variable in the regression, differenced Tobin’s q. These figures provide

motivating evidence for our core mechanism. The volatility of Tobin’s q is lower

during the subperiod in which the investment-q regression performs worse, and it is

higher during the subperiod in which the regression performs better.
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Under the null hypothesis that the model is true, the investment-q regression

should yield a higher R2 when there is more dispersion in the key explanatory variable,

Tobin’s q. Thus, based on our results, one possible explanation for the improved fit of

the aggregate regression is that the theory has always been “true,” but that Tobin’s

q has become more volatile relative to the model’s residuals. In the next section, we

use panel data from Compustat to examine more closely the empirical dispersion in

Tobin’s q and establish this pattern.

2.2 Increased dispersion in Tobin’s q

Shifting our focus from the aggregate series discussed above, we next reconstruct the

series of investment and valuation at the firm level. Using annual panel data on

publicly-traded firms from Compustat, we confirm and explore the growing empirical

dispersion in Tobin’s q.

We decompose the volatility of Tobin’s q along two dimensions: first between-

firm, then within-firm. These two dimensions are summarized in Figures 3 and 4,

respectively. In Figure 3 we plot, for each year, the cross-sectional standard deviation

of Tobin’s q in Compustat, then we smooth it by simple averaging over a rolling five-

year lag in order to focus on the trend. The cross-sectional dispersion has trended

upward over time. The standard deviation of Tobin’s q has risen from less than 5

during the 1980s and 1990s, to over 10 during the 2000s.

[Figure 3 here]

In Figure 4, we investigate how Compustat firms have changed over time by

examining the within-firm volatility. To create this figure, we proceed in two steps.

First, we calculate for each Compustat firm the within-firm volatilities of Tobin’s q

during its entire lifetime in Compustat. This creates volatility measures of valuation

that are fixed at the firm level. Next, for each year, we average these fixed volatility

numbers across all firms that are present in Compustat that year.

[Figure 4 here]

Figure 4 reveals that within-firm volatilities of Tobin’s q have greatly increased

relative to their 1980 values. Tobin’s q volatility has risen from less than 1 to over 5.

The increase in Tobin’s q volatility is especially noticeable in the late 1990s and early
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2000s. The series thus show that the composition of Compustat has shifted towards

firms with higher volatilities.

2.3 Better performance for firms with more volatile q

Motivated by the Compustat evidence above which shows that firms are exhibiting

greater volatility of q, we next demonstrate that the investment-q regression works

better where this volatility is greater.

The first point to make is that the within-firm volatility of Tobin’s q varies by

orders of magnitude across firms. We sort Compustat firms into four bins of within-

firm q volatility, and find that the average volatility in the lowest bin is 0.25, while

in the highest bin it is 12.53.4

The bin with the highest-volatility firms is where we find that the investment-q

relationship is the tightest. To show this, we estimate standard panel regressions of

investment on lagged Tobin’s q:

Ii,t+1

Kit

= αi + βqit + εit, (2)

where i indexes firms, t indexes years, I is capital expenditures, K is gross property,

plant, and equipment, q is defined as V
K

, where V is the market value of equity plus

book value of debt minus current assets. All of these definitions are taken from Peters

and Taylor (2017).

Table 1 performs this regression separately across four bins, with bin 1 as the

lowest within-firm volatility in Tobin’s q and bin 4 as the highest. The table confirms

that the regression fit improves when Tobin’s q is more volatile.

[Table 1 here]

Figure 5 visually illustrates how the volatility in the data gives rise to these results.

It samples 500 observations randomly from each of the lowest and the highest bins of

volatility, and plots the investment rate against the value of Tobin’s q for each obser-

vation, along with regression lines with slopes that correspond to the coefficients in

Table 1. The lowest-volatility bin shows no particular relationship between q and the

investment rate, while the highest-volatility bin illustrates a fairly tight relationship.

4Related, Erickson and Whited (2000) observe that Tobin’s q is highly skewed in the data, which
aids the identification of their strategy based on higher-order moments.
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[Figure 5 here]

In Table 1 and Figure 5, it may seem puzzling that the slope of the regression falls

across bins of Tobin’s q volatility, even as the R2 increases. One explanation for a

falling slope could be that the higher-volatility firms have market power. As argued

in Cooper and Ejarque (2003), market power represented by decreasing returns to

scale causes the slope of the regression to fall due to measurement error when using

average q to proxy for marginal q.5 R&D-intensive firms are a natural example of

this pattern because they are often characterized by volatile valuations and market

power gained from innovation. Mathematically, to reconcile the falling slope with

the increase in R2, one needs an offsetting source of higher volatility in Tobin’s q.

Our analysis shows that learning is a mechanism for generating the volatility. In the

appendix, we simulate a model with both learning and decreasing returns to scale,

and are able to reproduce the pattern in Table 1 and Figure 5. However, in the next

section we present our benchmark learning model without decreasing returns to scale

and therefore without measurement error.

If the large volatility in q is meaningless for investment, the improving fit of

the investment-q regression should not obtain. Greater variation in q provides the

opportunity for the investment-q regression to work, but does not force it to do

so. Instead, our findings suggest that the information reflected in equity market

valuations is tightly connected to investment policies, and this relationship becomes

the clearest when valuations move the most.

For robustness, Table 2 repeats the analysis of Table 1 after winsorizing q at the

1st and 99th percentiles, as is standard in the literature. The average volatility of q in

the highest-volatility bin falls to about 7.7, but the R2 pattern across the regressions

remains the same as in the previous table.

[Table 2 here]

In untabulated results, we observe the effect being even more dramatic when we

winsorize investment as well. Under this approach, the R2 of the fourth bin regression

reaches over 20%. Further results show that the pattern is also robust to adding

year fixed effects; to excluding all fixed effects; and to sorting on the stock price

5This measurement error is correlated with marginal q. It is therefore not suitable for the esti-
mator of Erickson and Whited (2000), which assumes that the measurement error is independent
of q.
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volatility instead of Tobin’s q volatility, confirming that higher volatility comes from

the numerator of q, not its denominator.

Finally, we connect these cross-sectional patterns with the aggregate time-series

patterns. In Figure 6, we separate the Compustat panel into two subperiods, 1975–

1995 and 1995–2015, as we did in Figures 1 and 2. We redefine the four bins of Tobin’s

q volatility separately within these two subperiods, and report the R2 from the panel

regression within each bin and subperiod. The figure reproduces the stylized patterns

documented so far. Within both subperiods, the fit of the regression increases steadily

across the bins of volatility in Tobin’s q. At the same time, the line for 1995-2015

is uniformly higher than the line for 1975-1995. These figures suggest that there

have always been some firms for which the investment-q regression was tighter due

to greater dispersion in Tobin’s q, and that these firms have become more important

in the aggregate in recent years.

[Figure 6 here]

In sum, the stylized facts discussed in this section demonstrate that the investment-

q regression works better in settings with more dispersion in Tobin’s q, both in the

cross-section and in the time-series. In Section 3 below, we rationalize these facts

with a learning model that explains why the types of firms appearing in the data in

more recent years are likely to exhibit a tighter relationship between their investments

and valuations.

3 Model

We develop a model of firm investment and learning. The model extends the setup

analyzed by Abel (2017) to account for cash-flow uncertainty and learning about the

expected long-term growth in cash flows.

3.1 Setup

Consider a competitive firm with capital Kt at time t, which accumulates according

to

dKt = (It − δKt)dt, (3)
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where It denotes the firm’s investment decision.

Similar to Erickson and Whited (2000), adjustments to the capital stock are linear

homogeneous in I and K

ψ(It, Kt, νt) =
a

2

(
It
Kt

)2

Kt + νtIt, (4)

where a is a positive constant so that the adjustment cost function is strictly convex.

The term νt represents a shock to the purchase price of capital. It follows a stochastic

process with zero mean

dνt = −κνtdt+ σνdW
ν
t . (5)

While the firm knows the current value of νt, the econometrician does not. For the

econometrician, νt is noise.

The firm produces cash flows according to a technology with constant returns to

scale

Π(Kt, θt) = θtKt, (6)

where we use the output price as numéraire. Without loss of generality, we abstract

from describing the flexible labor decision.6

The cash flow per unit of capital θt follows a mean reverting process

dθt = λ(µt − θt)dt+ σθdW
θ
t . (7)

While the instantaneous cash flow θt is observable, its long-term mean µt is not. The

firm forms expectations over its future stream of cash flows, but cannot perfectly

infer the process driving cash flows from past realizations because the unobservable

long-term mean µt evolves stochastically as described below.

6We can equivalently write the firm’s problem to include a labor decision. In this case, the
firm produces according to a Cobb-Douglas production function AtL

α
t K

1−α
t , where 0 < α < 1 and

At > 0. It pays a constant wage rate w per unit of labor, set to 1 for simplicity. The instantaneous

cash flow of the firm is maxLt
[
AtL

α
t K

1−α
t − Lt

]
= (1− α)α

α
1−αA

1
1−α
t︸ ︷︷ ︸

≡θt

Kt ≡ Π(Kt, θt).
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3.2 Learning

The long-term mean around which θt evolves, µt, is not observable, and it follows a

mean-reverting process

dµt = η(µ̄− µt)dt+ σµdW
µ
t . (8)

For simplicity of exposition, we fix µ0 = µ̄. In the special case with σµ = 0, the

long-term mean would be observable, and the firm could choose how much to invest

at each point in time knowing all the necessary information. However, as soon as

σµ > 0, the firm needs to update continuously its beliefs about µt.

The firm learns about the long-term mean from two sources. The first source is

free. The firm uses information from past cash-flow realizations in order to infer the

long term mean µt in the process (7). The second source is costly. The firm may

purchase a signal st that is informative about changes in the long-term mean dW µ
t

dst = dW µ
t +

1√
Φ
dW s

t , (9)

where all Brownian motions (W ν
t , W θ

t , W µ
t , and W s

t ) are independent. The parameter

Φ ≥ 0 dictates the informativeness of the signal. For now, one may consider Φ as

exogenously given, and subsection 3.5 below discusses how the signal informativeness

Φ is optimally chosen ex ante by the firm.

The following proposition and its corollary obtain from filtering theory (Liptser

and Shiryaev, 1977), with the proof provided in Appendix A.2.

Proposition 1 (Learning) The filtered variable µ̂t evolves according to

dµ̂t = η(µ̄− µ̂t)dt+
σθ
λ

(√
η2 +

1

1 + Φ

λ2σ2
µ

σ2
θ

− η

)
dŴ θ

t + σµ

√
Φ

1 + Φ
dŴ s

t , (10)

where dŴ θ
t ≡ dW θ

t + λ
σθ

(µt− µ̂t)dt represents the “surprise” component of the change

in cash flows per unit of capital and dŴ s
t ≡

√
Φ

1+Φ
dst is a scaled version of the signal

in equation (9), such that Ŵ s
t is a standard Brownian motion.

The Bayesian uncertainty, defined as ζt ≡ E[(µt − µ̂t)
2 | Ft] where Ft is the
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information set of the firm at time t, follows the deterministic process

dζt
dt

=
σ2
µ

1 + Φ
− 2ηζt −

λ2ζ2
t

σ2
θ

. (11)

The standard Brownian motion dŴ θ
t arises as follows. The firm expects a change

in cash flows per unit of capital of λ(µ̂t − θt)dt, but instead observes the realization

dθt. The difference, dθt − λ(µ̂t − θt)dt, represents the unexpected change, i.e., the

“surprise.” Dividing this difference by σθ yields the standard Brownian motion dŴ θ
t .

This Brownian motion is distinct from the true cash-flow shock dW θ
t which is unob-

servable by the firm, because it incorporates firm’s expectations of future cash-flow

growth (see Appendix A.2).

We assume that enough time has passed such that the Bayesian uncertainty has

reached a steady state. This is a common assumption in the literature on incomplete

information (e.g., Dumas, Kurshev, and Uppal, 2009), and it fits well in our model

with infinite horizon. The steady-state value for ζ, ζ̄, is obtained by setting the right-

hand side of equation (11) to zero. This yields a quadratic equation with only one

positive root:

ζ̄ =
σ2
θ

λ2

(√
η2 +

1

1 + Φ

λ2σ2
µ

σ2
θ

− η

)
. (12)

Because learning in the model is constantly regenerated, the steady-state uncertainty

is positive. It is increasing in σµ, decreasing in Φ, and goes to zero only in the limiting

case as Φ→∞ (when µt becomes perfectly observable).

Corollary 1.1 The conditional variance of the filter µ̂t,

Vart[µ̂t] = σ2
µ − 2ηζ̄, (13)

is strictly increasing in both σµ and Φ.

According to Corollary 1.1, the conditional variance of the filter increases when

there is more uncertainty about the long-term mean µt or when the firm acquires

information through a more informative signal Φ. Although the filtered long-term

mean µ̂t is less volatile than the truth µt (because the filter is a projection of µt on

the observation filtration of the firm), Corollary 1.1 shows that learning with a more
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informative signal Φ strictly increases the volatility of the filter itself. In the limit

when Φ→∞, the firm perfectly observes µt and the conditional variance of the filter

reaches the conditional variance of the unobserved process, σ2
µ.

Furthermore, Corollary 1.1 shows that learning affects uncertainty and volatility

in opposite ways: learning with more informative signals (higher Φ) decreases the

uncertainty ζ̄ in equation (12) but it increases the conditional volatility of the filter

Vart[µ̂t] in equation (13). In other words, although the firm decreases uncertainty

through learning at any moment in time, its beliefs become more volatile as they are

updated from one moment to the other.

For the rest of the paper, we refer to dŴ θ
t as “cash-flow shocks” and to dŴ s

t as

“information shocks.” Two key results arise from Proposition 1 and its Corollary,

reflecting the two sources of information from which firms learn. First, learning

from cash-flow realizations induces a positive correlation between the filter µ̂t and

cash flows θt, through cash-flow shocks dŴ θ
t . This extrapolative feature of learning

(Brennan, 1998) amplifies the impact of cash-flow shocks.

Second, learning from the signal st causes the firm’s estimate of the long-term cash-

flow mean µ̂t to respond to information shocks dŴ s
t . This increases the conditional

volatility of µ̂t.

We note that the learning taking place does not change the conditional volatility

of the cash-flow process (7) itself, which remains constant at σθ for any level of σµ.

Learning, however, does increase the volatility of the filter through the continuous

updating of the long-term cash-flow mean µ̂t.

3.3 The investment decision

The firm’s objective is to maximize the expected discounted sum of future cash flows,

net of investment costs,

V (Kt, θt, µ̂t, νt) = max
I

Et
[∫ ∞

t

e−r(s−t) {θsKs − Is − ψ(Is, Ks, νs)} ds
]
, (14)

subject to equations (3) and (4), where r is the interest rate. The information set

of the firm at time t is summarized by the capital stock Kt, the cash flow θt, the

conditional expectation of cash-flow growth µ̂t, and the shock to the purchase price

of capital νt.
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The Hamilton-Jacobi-Bellman equation associated with problem (14) is

rV = max
I
{θK − I − ψ(I,K, ν) +DV (K, θ, µ̂, ν)} , (15)

where D is the differential operator. This leads to the first order condition for invest-

ment,

0 = VK(K, θ, µ̂, ν)− 1− ψI(I,K, ν). (16)

In our model as in Hayashi (1982), the shadow cost of capital, marginal q, is equal to

average q, V
K

,

V (K, θ, µ̂, ν) = q(θ, µ̂, ν)K. (17)

Replacing the adjustment cost function (4) yields the following relationship be-

tween the rate of investment and q:

It
Kt

= −1

a
+

1

a
q(θt, µ̂t, νt)−

1

a
νt. (18)

Using equation (17) and solving for the optimal investment, we obtain the fol-

lowing partial differential equation for q (where qx denotes the partial derivative of q

with respect to the state variable x):

0 = θt +
(1 + νt)

2

2a
− 1 + a(r + δ) + νt

a
q + λ(µ̂t − θt)qθ + η(µ̄− µ̂t)qµ̂ − κνtqν

+
σ2
θ

2
qθθ +

(
σ2
µ

2
− ηζ̄

)
qµ̂µ̂ +

σ2
ν

2
qνν + λζ̄qθµ̂ +

1

2a
q2.

(19)

We solve this equation numerically by approximating q(θ, µ̂, ν) with Chebyshev

polynomials.7

7Since θ, µ̂, and ν are all mean-reverting, we define a grid that is centered on {µ̄, µ̄, 0}. The
algorithm yields a very accurate solution, with an approximation error of magnitude 10−23 obtained
with four polynomials in each dimension. For a similar approach, see Alti (2003).
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3.4 Learning and the relationship between investment and q

Without ν, the econometrician would observe a deterministic relationship between

investment and q in equation (18) and, counterfactually, this relationship would al-

ways have an R2 of one. The shock to the capital purchase price causes the R2 to be

below one:

R2 =
Var[q(θt, µ̂t, νt)]

(
1− Cov[q(θt,µ̂t,νt),νt]

Var[q(θt,µ̂t,νt)]

)2

Var[q(θt, µ̂t, νt)] + Var[νt]− 2 Cov[q(θt, µ̂t, νt), νt]
. (20)

The R2 coefficient increases with the variance of q as long as the covariance be-

tween q and ν is negligible.8 Notice also that a stronger regression coefficient for

q in equation (18) does not mechanically affect the R2, since the adjustment cost

parameter a simplifies away from (20).

The firm’s learning affects the R2. This can be seen from an application of Itô’s

lemma on q(θt, µ̂t, νt):

dq = ξtdt+

(
qθσθ + qµ̂

λ

σθ
ζ̄

)
dŴ θ

t + qµ̂σµ

√
Φ

1 + Φ
dŴ s

t + qνσνdW
ν
t , (21)

where ξt denotes the drift (its specific form does not matter for our analysis). When

the firm learns about the unobservable productivity growth µt, q becomes more sen-

sitive to cash-flow shocks dŴ θ
t through the second term in brackets above. Tobin’s q

also becomes sensitive to information shocks dŴ s
t through the third term above. Both

these effects increase the volatility of q(θt, µ̂t, νt) and, according to equation (20), the

R2 of the investment-q regression.

We illustrate the impact of learning on the R2 by means of simulations. To

this end, we implement a discretization of the continuous-time processes at a yearly

frequency (see Appendix A.3). We then solve for the partial differential equation (19)

and compute qt for each simulated point {θt, µ̂t, νt}. The resulting value for qt can

then be replaced in equation (18), yielding the investment rate It/Kt. This completes

the dataset necessary for implementing investment-q regressions.

8The R2 depends on the relationship between qt and νt. In our numerical calibration, we ensure
that the covariance between qt and νt is virtually zero, i.e., qν ≈ 0. This occurs for large values of κ,
i.e., when the persistence of νt is close to zero. A non-negligible persistence of νt creates temporal
dependence through which qt depends on νt. Even in this case, the covariance term in equation (20)
is of small magnitude, and does not impact our main intuition.
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Figure 7 plots as an example one simulation of 100 yearly observations. The

horizontal axis in each panel is the marginal q. The vertical axis represents the

optimal investment rate It/Kt. The calibration used is as follows: a = 16, r = 3%,

δ = 10%, λ = 0.5, σθ = 0.1, κ = 5000, σν = 40, µ̄ = 0.25, and η = 0.5.

[Figure 7 here]

The left panel corresponds to the case of an unobservable µt without learning,

that is, the firm sets µt = µ̄,∀t. In the middle panel, the firm learns about µt, but

only using the observable process for θt, i.e., Φ = 0. In the right panel, the firm also

learns through the signal in equation (9), with Φ = 20. Changes in µt are not yet

perfectly observed, but with Φ = 20 the signal in (9) is more informative relative to

the cash-flow signal in equation (7). The three panels show that learning improves

the fit of the regression. As elaborated above, this occurs through an increase in the

volatility of the regressor q. The average R2 coefficients obtained from 5,000 such

simulations are 18% for the left panel, 48% for the middle panel, and 56% for the

right panel. We also notice that the volatility of Tobin’s q increases with learning: it

averages 0.18 in the first panel, 0.39 in the second panel, and 0.45 in the third panel.

Although learning improves the R2 of the investment-q regression, it does not

influence its slope, which remains equal to 1/a across all models. This can be seen

in Figure 7, where the fitted line remains the same in the three simulated panels. In

contrast, in the data of Figure 5 the slope decreases across the bins. As we discuss in

Appendix A.4, the decreasing slope can be attributed to decreasing returns to scale,

consistent with market power from R&D innovations.

3.5 Endogenous learning

In this section, we endogenize the information acquisition problem. Specifically, the

firm can purchase a more informative signal (higher Φ) to learn more about µt, but

the more informative signal is costlier (Detemple and Kihlstrom, 1987). The cost can

be viewed as a research expense that firms incur. We consider a static information

acquisition decision, in which the firm makes a choice of Φ at time 0 and maintains

this capacity of information acquisition over its lifetime.

The firm value immediately after the choice of informativeness Φ is defined as

Ṽ (K0, θ0, µ0, ν0), and its associated cost, c(Φ), is a strictly increasing and convex
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function with c′(0) = 0. With Φ as a parameter in Ṽ (K0, θ0, µ0, ν0), the problem is

equivalent to the earlier model without an endogenous Φ. The optimal Φ∗ is defined

by the first-order condition ṼΦ(K0, θ0, µ0, ν0) = c′(Φ∗), and there is an interior solution

if and only if ṼΦΦ(K0, θ0, µ0, ν0)− c′′(Φ∗) < 0.

We are interested in investigating whether the optimal purchase of information

increases with the uncertainty about the long-term mean. Differentiating the first-

order condition with respect to σµ and rearranging, we get

dΦ∗

dσµ
=

ṼΦσµ(K0, θ0, µ0, ν0)

c′′(Φ∗)− ṼΦΦ(K0, θ0, µ0, ν0)
. (22)

The denominator is positive if the problem has an interior solution. The optimal

amount of information acquisition Φ∗ increases in σµ if and only if an increase in

the uncertainty about µt increases the marginal benefit of purchasing information

(ṼΦσµ(K0, θ0, µ0, ν0) > 0).

The problem therefore reduces to showing that ṼΦσµ(K0, θ0, µ0, ν0) > 0. While

there is no closed-form proof of this, it can be checked numerically as Ṽ (K0, θ0, µ0, ν0)

is just the value function from the problem without an endogenous signal informa-

tiveness choice Φ. Figure 8 shows that this is indeed the case. The left panel plots

the function q(θt, µ̂t, νt), where Φ varies from 0 to 25 on the x-axis. Each line in the

plot corresponds to a different value of σµ ∈ {0.02, 0.08, 0.14}. In these plots, the

state variables are fixed at θt = µ̂t = µ̄ and νt = 0, but the results remain the same

with different values for the state variables. The right panel of Figure 8 presents the

second derivative qΦσµ , which is approximated using finite difference.9 This derivative

is positive at all times, consistent with the optimal information acquisition level Φ∗

increasing in σµ.

[Figure 8 here]

This result implies that firms operating in more uncertain environments, e.g.,

high-tech firms, optimally choose to invest more in research. Together with the re-

sult from the previous section that learning increases the R2 of the investment-q

regression, this generates a cross-sectional implication: the investment-q regression

performs better for firms that spend more on gathering information through research

9In our model, the second derivative qΦσµ has the same sign as ṼΦσµ .
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and development.10

4 Empirical analysis of the model predictions

The model in the previous section demonstrates that the investment-q regression

performs better in settings with learning, and that this effect is stronger among firms

that endogenously acquire more information. In this section, we dig deeper into the

empirical predictions of the model.

4.1 Better performance in high-tech industries

Section 3.5 contains the main prediction of the model, where the investment-q re-

gression performs better among firms that endogenously choose to expend greater

resources on information acquisition. Empirically, we are interested in identifying

groups of firms where learning is most likely to take place. We focus on firms that

decide to spend more on R&D. Our proposed learning mechanism should cause the

investment-q regression to work better in industries featuring high investment in re-

search. This insight provides testable cross-sectional implications of the model.

For an operational definition of a research-intensive industry, we use the following

seven SIC codes: 283 (drugs), 357 (office and computing equipment), 366 (commu-

nications equipment), 367 (electronic components), 382 (scientific instruments), 384

(medical instruments), and 737 (software). We refer to these as “research-intensive”

or “high-tech” industries for the remainder of this paper. The industry classification

follows Brown, Fazzari, and Petersen (2009), which shows that the seven industries

account for nearly all the growth in aggregate R&D during the 1990s.

We build up our analysis of research-intensive industries in several layers. First,

we examine the empirical distribution of Tobin’s q in these industries compared to

the average Compustat firm. Figure 9 displays the empirical density of Tobin’s q for

firm-years in the high-tech and other industries in the sample. For firms that spend

more on research, the empirical distribution of Tobin’s q is more skewed and more

10For simplicity, our model considers a purely cross-sectional learning decision, made one time in
the firm’s lifetime, rather than a dynamic decision. This allows us to connect our model to the cross-
sectional distribution of firm-level R&D intensity, which is relatively stable, without introducing a
second capital accumulation decision into the firm’s problem.
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dispersed.11 In our model, this pattern arises because these firms’ values are much

more sensitive to the arrival of signals about future profitability.

[Figure 9 here]

Figure 10 calculates the within-firm volatility of Tobin’s q for each firm, and plots

the empirical density of this volatility, again separating out high-tech firms from the

other industries. This volatility also follows a skewed distribution. It is higher on

average for the high-tech firms than for the others.

[Figure 10 here]

It is not surprising that market valuations of high-tech companies are particu-

larly volatile. What is less clear is that these fluctuations are highly predictive of

investment, as expected under the q theory of investment. This contrasts with the

alternative view that market value fluctuations arise from problems in measuring the

firm’s capital stock or from difficulties outsiders face in valuing the firm, which would

make these fluctuations simply exogenous noise with respect to the firm’s investment

policy.

Tables 3 and 4 repeat the panel regressions of investment on lagged q with fixed

effects, as specified earlier in equation (2) and implemented in Tables 1 and 2, where

various columns separate out high-tech from other industries.

[Tables 3 and 4 here]

Columns 1 and 2 of Table 3 show that the standard investment-q panel regression

fares better among high-tech firms: The R2 value from the regression doubles from

11% to 22% when we move from the non-tech to the high-tech subsample.

One may object that, since we already have shown that the investment-q regression

works better in recent years, this comparison simply captures the increasing impor-

tance of high-tech firms towards the end of the sample. To check this, in Columns 3

and 4 we restrict the sample to years prior to 1995. The same discrepancy holds for

11The figure includes a mass of negative values of Tobin’s q. Negative values are possible when
subtracting out current assets from the numerator, which we do for consistency with Peters and
Taylor (2017). Our analysis is qualitatively unaffected when not subtracting current assets, in which
case there is no negative value for q.
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these early years: the R2 of the panel regression increases from under 7% for non-

tech industries to over 21% for high-tech, in accord with the investment-q regression

working better for high-tech industries.

Table 4 checks robustness to some alternative approaches. Column 1 shows that

firm fixed effects are not driving the performance of the regression, as the (overall)

R2 from the pooled regression is similar to the (within) R2 reported in Table 3.

Column 2 shows that the fit of the regression improves even more when we add time

fixed effects, as is done in some of the other papers in the Tobin’s q literature. In

untabulated results (available on request) we document further robustness to various

combinations of fixed effects and approaches to winsorizing.

Columns 3 and 4 return to our main panel specification with firm fixed effects

but no time fixed effect, and adds in annual R&D expense plus 30% of annual SG&A

expense as a measure of intangible investment, following Peters and Taylor (2017).

The conclusion remains the same as before: the regression works better in high-tech

industries (R2 = 20%) than in other industries (R2 = 8%).

To show that the results extend beyond the coarse high-tech proxy, we examine

R2 values using more general measures of R&D intensity. In Figure 11, we exam-

ine evidence at the firm level. We sort firms in the Compustat panel into six bins

based on their average R&D intensity (defined as the ratio of annual R&D to total

assets) within their lifetime in Compustat. Within each bin, we estimate the panel

investment-q regression. The figure plots the R2 values obtained from the regression

in each bin. These values show an increasing pattern, from about 10% in the lowest

bin to over 25% in the highest bin.

[Figure 11 here]

In Figure 12, we perform a similar exercise at the industry level. We perform the

investment-q regression separately within each 3-digit SIC industry in Compustat,

and plot the resulting R2 values against average R&D intensity calculated across

firm-years in that industry. The figure shows a clear positive association. The high-

tech industries from the previous analysis are marked with an “×” in the figure. They

are clustered near each other at high values of R&D intensity, and relatively high R2

values, although not the highest observed R2 across all industries.

[Figure 12 here]
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The finding that the investment-q regression works better in high-tech industries

was previously established in Peters and Taylor (2017). In their Section 5.1, Peters

and Taylor use several cross-sectional proxies beyond the simple industry classifi-

cation to explore a number of explanations for this fact, but ultimately reject all of

them. They conclude: “Why the classic q-theory fits the data better in high-intangible

settings is also an interesting open question.” Our learning-based model of corporate

investment provides a plausible explanation for this finding.

The growth of high-tech industries is key to understanding the improved fit of

the aggregate investment-q relationship in recent years, and by extension the future

empirical performance of the q theory of investment. Figure 13 shows that the firms

in the high-tech industry classification represent a growing fraction of the number of

firms and of book assets in Compustat. Similarly, Peters and Taylor (2017) show that

their measure of intangible capital, which capitalizes past intangible investments such

as R&D and SG&A, also increases over time in both Compustat and the aggregate

data from the Fed Flow of Funds.

[Figure 13 here]

In conjunction with our cross-sectional findings, these trends suggest that the q

theory of investment may have been the right theory at the wrong time. While the

theory has traditionally not fared well for the capital-intensive firms that dominated

the economy when the theory was first developed, it turns out to be well-suited for the

new research-intensive economy that features wider endogenous swings in valuations

and investments.

4.2 Better performance with low cash flow-q correlation

We next explore a subtler implication of the model relating to the role of cash flows.

The model predicts that the investment-q regression works better in settings where

Tobin’s q is less correlated with cash flow. This is because, in the model, q is less

responsive to cash flow when the firm chooses to learn from other signals as well. The

combination of both signals causes Tobin’s q to be more informative for the firm’s

investment decisions, improving the fit of the investment-q regression.

This learning mechanism works in the opposite direction as misspecification issues.

Consider the misspecification effect of omitting cash flow from the regression, when an
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alternative theory (e.g., based on financial constraints) would predict that cash flow

is an important variable. The resulting omitted variable bias would be smaller, and

therefore the investment-q regression should work better, in settings where Tobin’s q

is more correlated with cash flow, because there is less empirical content in cash flow

separate from q.

Building on this intuition, we test the relative importance of the learning mech-

anism against potential misspecification. We separate Compustat firms by industry

at the 3-digit SIC code, and we investigate how the tightness of the fit between cash

flow and Tobin’s q is related to the tightness of the fit between investment and q.

Within each industry, we estimate fixed-effects regressions of cash flow on lagged q,

then of investment on lagged q. We save the R2 values from both of these regressions

for each industry, and plot them in Figure 14.

[Figure 14 here]

The pattern in the figure lends support to the learning mechanism. The industries

with the tightest connection between q and investment (the highest values on the y-

axis) are also the industries with the weakest connection between q and cash flow (the

left-most values on the x-axis). Conversely, the industries with the tightest connection

between q and cash flow are also the industries with the weakest connection between q

and investment.

The overall pattern is contrary to what we would expect with a misspecification

problem. If a variable (e.g., cash flow) is omitted from the regression but it is ac-

tually an important predictor of investment, the R2 from the incorrect specification

should increase, not decrease, when the included (q) and omitted (cash flow) variables

are more highly correlated, because the omitted variable does not contain as much

independent information. While our findings do not indicate that there is no mis-

specification in our model, i.e., cash flow may well be an important regressor in the

true model, our findings do suggest that the empirical effects of the misspecification

are outweighed by the learning mechanism.

4.3 Disentangling learning from measurement error in q

Our benchmark learning model does not include measurement error. In our setting,

marginal q is always equal to average q. Empirically, however, Tobin’s average q may
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be a poor proxy for a number of reasons, such as measurement error in the firm’s

capital stock. In this section, we empirically disentangle our learning mechanism

from measurement error.12

We draw on the large literature on measurement error in Tobin’s q. Two con-

tributions are especially relevant to our work. First, Erickson and Whited (2000)

develop an estimator that is robust to measurement error by exploiting identifying

information in the third- and higher-order moments of the empirical distribution of

Tobin’s q. Erickson, Jiang, and Whited (2014) improve on this approach by focusing

on cumulants rather than moments. These approaches yield, among other things, es-

timates of two population R2 values: First, the R2 from the measurement regression

of Tobin’s average q on “true” marginal q, labeled τ 2; and second, the R2 from the

investment regression of investment rate on “true” marginal q, labeled ρ2. We use

these parameter estimates to quantify the cross-sectional importance of measurement

error and the “true” performance of the q theory.

Second, Peters and Taylor (2017) focus on the role of intangibles, which are miss-

ing from the standard measurement of investment and average q. They propose to

capitalize R&D and SG&A expenditures as intangible investments, and show that

this approach improves the performance of the regression. The adjustment is largest

for high-tech firms, for whom intangibles are relatively more important. We examine

how the adjustment interacts with our learning mechanism in the cross-section.

As motivating evidence, we first examine the evolution of τ 2 and ρ2 through time

with and without the adjustment for intangibles. Figure 15 displays the time-series

of τ 2 and ρ2. The estimators of Erickson et al. (2014) are applied to rolling ten-year

windows of Compustat data, using three cumulants to exactly identify the system.13

The figure separately plots the series with (dashed lines) and without (solid lines)

intangibles in the measures of investment and q.

[Figure 15 here]

First, consider the two series for τ 2, which are displayed in the left panel of Figure

15. These capture the degree of measurement error driving a wedge between average q

and marginal q. A higher value of τ 2 corresponds to a greater R2 in the measurement

12Throughout this section, we refer to measurement error that satisfies the identifying assumptions
in Erickson and Whited (2000).

13Results are essentially unchanged if we use a greater number of cumulants to overidentify the
system.

24



regression, and thus a lower degree of measurement error. In the early years, Figure

15 shows that the τ 2 values for total q and standard q are close together. This suggests

that intangibles did not create a large amount of measurement error, consistent with

the plots of aggregate intangible investment presented in Peters and Taylor (2017). In

the later years, however, the two lines diverge, with the total-q intangible adjustment

yielding a consistently better proxy for marginal q. Since the late 1990s, the quality

of the standard q proxy has worsened, while the quality of total q has improved. As

is well-known, intangibles are an increasingly important feature of the economy and

accounting for them improves the measurement.

Second, consider the two series for ρ2, which are displayed in the right panel of

Figure 15. These capture the performance of the “true” investment regression, i.e.,

the regression of investment on the “true” marginal q. Using total investment, which

includes R&D expenses and 30% of SG&A expenses as intangible investment, pro-

duces a consistently better fit than the standard investment with physical capital

expenditures only. Assuming that the cumulant-estimator approach has addressed

measurement error in Tobin’s q, the discrepancy between total investment and stan-

dard investment is not driven by measurement error. Rather, it suggests that q

theory also applies to intangible investment, and accounting for intangibles improves

the empirical performance of the q theory.

Most importantly for our purpose, the ρ2 values for both investment measures have

trended upwards over time. Again, under the identifying assumptions of Erickson

et al. (2014), this is not due to measurement error. Instead, it reflects the fact that

the explanatory power of “true” marginal q on investment has improved, consistent

with the motivating evidence from Figures 1 and 2. The improved fit of the regression

is the main prediction of our learning model. Figure 15 empirically summarizes the

importance of measurement error vis-à-vis the improving investment-q relationship.

Figure 16 explores the ρ2 evidence cross-sectionally. The figure distinguishes be-

tween two different groups of firms. The gray bars belong to firms with below-median

volatility of Tobin’s q; and the black bars, to firms with above-median volatility. In

the left pair of bars, this sorting is performed using standard measures of investment

and Tobin’s q, while in the right pair of bars, the sorting is performed using the

total-investment and total-q adjustments.

[Figure 16 here]
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The figure demonstrates that the R2 fit remains much higher among firms with

higher volatility of Tobin’s q, even after correcting for the measurement error using

Erickson et al. (2014). This pattern holds for both standard and total q.

Figure 17 presents a similar set of ρ2 values, where firms are separated into high-

tech and other industries as in Table 3, rather than sorted on the volatility of q.

Regardless of whether standard or total q is used to proxy for marginal q, the fit of

the q theory is higher among high-tech firms than in other industries.

[Figure 17 here]

For completeness, Figures 18 and 19 plot the τ 2 values for the cross-sections of

the prior two figures. In the figures, we see that the total-q adjustment is particularly

effective at addressing measurement error for high-tech firms and firms with high

volatility of Tobin’s q.

[Figure 18 here]

[Figure 19 here]

In sum, the investment-q regression fits better among high-tech industries and

those with high volatility in Tobin’s q, even after adjusting for measurement error in

Tobin’s q as in Erickson et al. (2014), and after accounting for intangibles as in Peters

and Taylor (2017). This suggests that the empirical support for our model operates

through a better fit of the true regression of investment on marginal q, not through

differences in measurement error.

5 Conclusion

This paper is motivated by the empirical finding that the relationship between ag-

gregate investment and Tobin’s q has become remarkably tight in recent years. This

observation stands in contrast to a large literature showing that this regression per-

formed quite poorly in the past. We attribute the improvement in the empirical

performance of the classic regression to an increase in the empirical variation in To-

bin’s q relative to residual factors affecting investment.

We rationalize these patterns with a learning-based model of corporate investment.

Learning by firms endogenously produces more variation in marginal q, improving
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the fit of the regression. The learning mechanism is relevant especially in research-

intensive industries. Thus, the improved fit of the investment-q relationship is related

to the substantial growth in expenditures on research and other intangibles in the

aggregate. We investigate the model’s predictions in the cross-section of firms in

Compustat, and find empirical support for our learning mechanism.

In conclusion, even a simple version of the q theory of investment can describe the

data quite well, when given sufficient variation in the key regression variable. Coun-

terintuitively, this variation arises in firms far different from the canonical capital-

intensive firms for which the theory was initially developed. Our findings suggest that

corporate learning may be an important feature to capture in investment models, and

that Tobin’s q may be a particularly effective proxy for investment opportunities in

R&D industries. Most importantly, as research-intensive firms are a growing segment

of the economy, the future of the investment-q relationship looks increasingly bright.
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A Appendix

A.1 Aggregate data from NIPA tables and Flow of Funds

This section details how we construct the aggregate quarterly series of investment

and Tobin’s Q, following Hall (2001) and Philippon (2009). The series from those

papers are publicly available, but they end in 1999 and 2007 respectively, so we must

reconstruct them with more recent data in order to extend the time-series.

Tobin’s q The numerator of Tobin’s q is the aggregate market value of corporate

equity and corporate debt, minus corporate inventories. Aggregate market equity

is series FL103164103 from the Fed’s Flow of Funds website (note that this series

was previously labeled FL103164003 until mid-2010).14 Aggregate corporate debt is

measured as financial liabilities (series FL104190005Q), minus financial assets (series

FL104090005Q), plus the market value of outstanding bonds, minus the book value

of outstanding bonds. The book value of outstanding bonds is the sum of the out-

standing amounts of taxable corporate bonds (series FL103163003Q) and tax-exempt

corporate bonds (series FL103162000Q).

The market value of bonds is calculated according to an algorithm employed in

Hall (2001). Corporate bonds are assumed to be issued with ten-year maturities

at a yield taken from a broad index (for taxable bonds, the BAA yield reported

by Moody’s; for tax-exempt bonds, the muni bond yields reported by the Federal

Reserve’s Table H.15). Market values are then recalculated for each vintage of bonds

in each year by discounting their remaining scheduled payments at the then-prevailing

yield, so that the market and book values of any vintage of bonds diverge after the

issuance date.

The denominator of Tobin’s q is the replacement cost of the firm’s capital stock.

This is measured by capitalizing gross corporate fixed investment (series FU105013005)

at an annual depreciation rate of 10%, and initializing the stock series at $569 billion

(taken from Hall (2001)). The investment series are deflated, and then the capital

stock reflated, using the NIPA implicit deflator for fixed non-residential investment

(from NIPA Table 7.1, line 32).

14Flow of Funds data can be downloaded at http://www.federalreserve.gov/datadownload/

Choose.aspx?rel=Z.1
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Investment The numerator of corporate investment is the seasonally-adjusted se-

ries of private nonresidential fixed investment (PNFI), available from the FRED web-

site of the St. Louis Fed. The denominator is the gross capital stock, measured as

the net stock of fixed assets (series K1NTOTL1ES000 on FRED) plus their aggre-

gate depreciation (series M1NTOTL1ES000). Both investment and capital stock are

deflated using the same NIPA deflator as above. The capital stock series is recorded

only in the last quarter of each year, so we interpolate these year-end values to the

other quarters of the year.

A.2 Proof of Proposition 1

The observable variables are the cash-flow process (7) and the signal (9). The unob-

servable variable is µt. Write the dynamics of the observable variables θt and st:[
dθt

dst

]
=

([
−λθt

0

]
︸ ︷︷ ︸

A0

+

[
λ

0

]
︸︷︷︸
A1

µt

)
dt+

[
0

1

]
︸︷︷︸
B1

dW µ
t +

[
σδ 0

0 1√
Φ

]
︸ ︷︷ ︸

B2

[
dW θ

t

dW s
t

]
, (A.1)

and of the unobservable variable µt:

dµt = ( ηµ̄︸︷︷︸
a0

+ (−η)︸︷︷︸
a1

µt)dt+ σµ︸︷︷︸
b1

dW µ
t +

[
0 0

]
︸ ︷︷ ︸

b2

[
dW θ

t

dW s
t

]
. (A.2)

We will apply the following standard theorem.

Theorem 1 (Liptser and Shiryaev, 1977) Consider an unobservable process ut and

an observable process st with dynamics given by

dut = [a0(t, st) + a1(t, st)ut] dt+ b1(t, st)dZ
u
t + b2(t, st)dZ

s
t (A.3)

dst = [A0(t, st) + A1(t, st)ut] dt+B1(t, st)dZ
u
t +B2(t, st)dZ

s
t . (A.4)

All the parameters can be functions of time and of the observable process. Liptser and

Shiryaev (1977) show that the filter evolves according to (we drop the dependence of
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coefficients on t and st for notational convenience):

dût = (a0 + a1ût)dt+ [(b ◦B) + ζtA
>
1 ](B ◦B)−1[dst − (A0 + A1ût)dt] (A.5)

dζt
dt

= a1ζt + ζta
>
1 + (b ◦ b)− [(b ◦B) + ζtA

>
1 ](B ◦B)−1[(b ◦B) + ζtA

>
1 ]>, (A.6)

where ζt is the posterior variance (or the Bayesian uncertainty) about ut and

b ◦ b = b1b
>
1 + b2b

>
2 (A.7)

B ◦B = B1B
>
1 +B2B

>
2 (A.8)

b ◦B = b1B
>
1 + b2B

>
2 . (A.9)

In our setup, we obtain

b ◦ b = σ2
µ (A.10)

B ◦B =

[
σ2
θ 0

0 Φ+1
Φ

]
(A.11)

b ◦B =
[
0 σµ

]
, (A.12)

and

[(b ◦B) + ζtA
>
1 ](B ◦B)−1 =

[
λζt
σ2
θ

σµΦ

1+Φ

]
. (A.13)

Furthermore, the Bayesian uncertainty ζt follows the deterministic process

dζt
dt

=
σ2
µ

1 + Φ
− 2ηζt −

λ2ζ2
t

σ2
θ

, (A.14)

which has the following steady-state solution

ζ̄ =
σ2
θ

λ2

(√
η2 +

1

1 + Φ

λ2σ2
µ

σ2
θ

− η

)
. (A.15)
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Using (A.5) and (A.13) and replacing ζt = ζ̄, we can write

dµ̂t = η(µ̄− µ̂t)dt+
[
λ
σ2
θ
ζ̄ σµ

Φ
1+Φ

] [dθt − λ(µ̂t − θt)dt
dst

]
. (A.16)

The (observable) process θ can be written in two ways:

dθt = λ(µt − θt)dt+ σθdW
θ
t (A.17)

dθt = λ(µ̂t − θt)dt+ σθdŴ
θ
t . (A.18)

The first equation is written under the physical (true) probability measure. The

second equation is written under the filtration of the firm, and Ŵ θ
t is a standard

Brownian motion under this filtration. Intuitively, the second equation shows how the

firm interprets the dynamics of the observable process θ. From these two equations,

we obtain:

dθt − λ(µ̂t − θt)dt = σθdŴ
θ
t . (A.19)

Furthermore, we can write the signal as

dst = dW µ
t +

1√
Φ
dW s

t =

√
Φ + 1

Φ
dŴ s

t , (A.20)

where Ŵ s
t is a standard Brownian motion independent of Ŵ θ

t . This leads to

dµ̂t = η(µ̄− µ̂t)dt+
[
λ
σθ
ζ̄ σµ

√
Φ

1+Φ

] [dŴ θ
t

dŴ s
t

]
, (A.21)

which, after replacement of (A.15), yields:

dµ̂t = η(µ̄− µ̂t)dt+
σθ
λ

(√
η2 +

1

1 + Φ

λ2σ2
µ

σ2
θ

− η

)
dŴ θ

t + σµ

√
Φ

1 + Φ
dŴ s

t . (A.22)

Notice that from (A.17)-(A.18) we can write:

dŴ θ
t = dW θ

t +
λ

σθ
(µt − µ̂t)dt, (A.23)
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and we also have from (A.20):

dŴ s
t =

√
Φ

1 + Φ
dst. (A.24)

We can therefore write Proposition 1.

From Proposition 1, the conditional variance of the filter µ̂t is

Vart[µ̂t] = σ2
µ −

2ησ2
θ

λ2

(√
η2 +

1

1 + Φ

λ2σ2
µ

σ2
θ

− η

)
. (A.25)

We can then compute

∂ Vart[µ̂t]

∂σµ
= 2σµ

1− ησθ

(1 + Φ)
√
η2σ2

θ +
λ2σ2

µ

1+Φ

 > 0 (A.26)

and

∂ Vart[µ̂t]

∂Φ
=

ησθσ
2
µ

(1 + Φ)2

√
η2σ2

θ +
λ2σ2

µ

1+Φ

> 0, (A.27)

which leads to Corollary 1.1.

A.3 Discretization used for simulations

The following processes are simulated under the filtration of the firm:

cash flow: dθt = λ(µ̂t − θt)dt+ σθdŴ
θ
t (A.28)

(scaled) signal: dŴ s
t (A.29)

filter: dµ̂t = η(µ̄− µ̂t)dt+ ΩdŴ θ
t + σµ

√
Φ

1 + Φ
dŴ s

t

(A.30)

capital purchase price shocks: dνt = −κνtdt+ σνdW
ν
t , (A.31)
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where we define

Ω ≡ σθ
λ

(√
η2 +

1

1 + Φ

λ2σ2
µ

σ2
θ

− η

)
. (A.32)

Once we have simulated the four time-series above, we compute q(θt, µ̂t, νt) for each

simulated point. Then, we use the first-order condition for investment to compute

the investment-capital ratio for each simulated point

It
Kt

= −1

a
+

1

a
q(θt, µ̂t, νt)−

1

a
νt, (A.33)

which provides all the data necessary for the regressions. We implement the following

discretization of the continuous-time processes (A.28)-(A.31):

νt+∆ = νte
−κ∆ + σν

√
1− e−2κ∆

2κ
dW ν

t , (A.34)

µ̂t+∆ = µ̂te
−η∆ + µ̄

(
1− e−η∆

)
+

√
1− e−2η∆

2η

(
ΩdŴ θ

t + σµ

√
Φ

1 + Φ
dŴ s

t

)
, (A.35)

θt+∆ = θte
−λ∆ + µ̂t

(
1− e−λ∆

)
+ σθ

√
1− e−2λ∆

2λ
dŴ θ

t . (A.36)

A.4 Combining learning with decreasing returns to scale

This appendix extends the model from Section 3 to allow for market power, which

we represent through decreasing returns to scale in the profit function (Cooper and

Ejarque, 2003). Suppose the profit function is as follows:

Π(Kt, θt) = θtK
α
t . (A.37)

If α < 1, the Hayashi (1982) conditions are violated and marginal q no longer equals

average q, so that the use of average q in the investment-q regression induces mea-

surement error.

As in Section 3, equation (14), the firm’s objective function leads to a linear
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relationship between investment and marginal q,

I

K
= −1

a
+

1

a
VK(K, θ, µ̂, ν) +

1

a
ν, (A.38)

where VK(K, θ, µ̂, ν) denotes marginal q, i.e., the shadow cost of capital. Replacing

this relationship in the HJB equation yields a partial differential equation for V .

We solve this equation numerically by approximating V (K, θ, µ̂, ν) with Chebyshev

polynomials. We compare three model specifications:

(i) A model without learning and with constant returns to scale (α = 1). This is

a special case of the model analyzed in Section 3, in which marginal q equals

average q. Consequently, the investment-q regression exhibits no measurement

error.

(ii) A model with learning and with decreasing returns to scale (α = 0.95). In this

specification, σµ = 0.1 and the firm learns from cash-flow realizations and from

the additional signal st, with Φ = 5. In this model, the investment-q regression

exhibits measurement error.

(iii) A model with learning and with decreasing returns to scale (α = 0.9). In this

specification, σµ = 0.15 and the firm learns from cash-flow realizations and from

the additional signal st, which is more informative with Φ = 20. In this model,

the investment-q regression exhibits measurement error.

For all the above specifications, the calibration is the same as in our baseline model

of Section 3. The values chosen for the parameter α are in line with calibrations used

in the literature (e.g., Gomes, 2001).

Table 5 presents simulation results. Each of the three models above is simu-

lated 5,000 times at yearly frequency for 100 years. For each simulation, we run the

investment-q regression using average q (which equals V/K) as a proxy for marginal q.

Each row of the table shows the R2 coefficient, the slope of the regression, and the

volatility of average q (where all reported statistics are averaged over the 5,000 sim-

ulations).

[Table 5 here]

Column (1) shows that the R2 coefficient increases with learning, which is our main

result. Column (2) shows that the slope of the investment-q regression decreases with
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market power. It might seem that this decreasing slope should also lead to a decrease

in R2, but the offsetting impact of learning leads to a net increase in R2. The reason

for the increase in R2 is a substantial increase in the volatility of average q, as shown

in column (3). As elaborated above, this results from learning.

Figure 20 depicts the relationship between investment and average q for two sim-

ulated samples. The blue triangles are generated from a simulation of Model (i)

without learning and without decreasing returns to scale. The red crosses are gener-

ated from a simulation of Model (iii) with learning and decreasing returns to scale,

α = 0.9. This figure reproduces qualitatively the pattern of Figure 5, where the R2

coefficients increase while the slope coefficients decrease. Indeed, while decreasing

returns to scale dampen the slope coefficient, learning induces a higher volatility of

average q, which ultimately leads to a higher R2. We also notice that Tobin’s q is

on average higher with decreasing returns to scale, in line with the intuition from

Lindenberg and Ross (1981) that q should persist above one for firms with monopoly

rents.

[Figure 20 here]
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Figure 1: Aggregate quarterly investment rate and lagged Tobin’s q.
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Figure 2: Year-over-year differences of aggregate quarterly investment rate and lagged
Tobin’s q.
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Figure 3: Between-firm dispersion in Tobin’s q, 1980-2015. For each year, the figure
plots the cross-sectional standard deviation of that year’s Tobin’s q across the firms
in Compustat during that year. The series is smoothed over a five-year lag.
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Figure 4: Within-firm dispersion in Tobin’s q, 1980-2015. For each firm in Compustat,
we calculate the within-firm volatility of Tobin’s q during that firm’s entire lifetime in
Compustat. We then average that firm-level measure across all firms in Compustat
for each year. The series is thus driven by changes in the composition of Compustat
firms. Finally, the series is smoothed over a five-year lag.
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investment rate. Both numbers are demeaned within-firm to remove the firm fixed
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best-fit line of the same color reflects the regression in Table 1.
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Figure 7: Relationship between investment and q for three different firms, for sim-
ulated samples of 100 yearly data points. In the left panel, the firm does not learn
about µt, which is held constant at µ̄. In the middle panel, the firm learns about µt
exclusively from the cash-flow process (7), i.e., Φ = 0. In the right panel, the firm
learns about µt from the cash-flow process (7) and from the signal (9) with Φ = 20.
The rest of the calibration used for these simulations is: a = 16, r = 3%, δ = 10%,
λ = 0.5, σθ = 0.1, κ = 5000, σν = 40, µ̄ = 0.25, and η = 0.5.
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Figure 8: The left panel plots q(θt, µ̂t, νt) when θt = µ̂t = µ̄ and νt = 0. Each line
corresponds to a different value of σµ ∈ {0.02, 0.08, 0.14}. The lines are plotted as
functions of Φ, which goes from 0 to 25. The right panel uses the finite difference
method to compute qΦσµ , which is positive in all cases.
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Figure 9: Empirical distribution of Tobin’s q for firm-years in annual Compustat from
1975 to 2015, separating out high-tech industries from other industries. High-tech
industries are defined as SIC codes 283, 357, 366, 367, 382, 384, and 737, following
Brown et al. (2009).
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Figure 10: Empirical distribution of the within-firm volatility of Tobin’s q for firm-
years in annual Compustat from 1975 to 2015. The figure calculates the volatility
for each firm, then averages high-tech industries separately from other industries.
High-tech industries are defined as SIC codes 283, 357, 366, 367, 382, 384, and 737,
following Brown et al. (2009).
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Figure 11: R2 values from the panel investment-q regressions, performed separately for
each bin of firm-level R&D intensity. R&D intensity is annual R&D expense divided
by book assets, assigning zero for missing R&D data. It is calculated separately for
each firm-year in Compustat from 1975-2015, then averaged within-firm.
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Figure 12: Each dot corresponds to a 3-digit SIC industry. The y-axis plots R2 values
from the panel investment-q regression performed separately in each industry. The
x-axis plots the log of industry-average R&D intensity. R&D intensity is defined as
annual R&D expense divided by book assets, assigning zero for missing R&D data.
It is calculated separately for each firm-year in Compustat from 1975-2015, then
averaged across firm-years in each 3-digit SIC industry in Compustat. Only industries
with at least ten observations in Compustat are retained. The “×” markers denote
the R&D-intensive industries identified in Brown et al. (2009).
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Figure 13: Fraction of firms in Compustat each year that fall into our classification
of high-tech industries. The blue line is an equal-weighted average, while the red line
weights firms by their shareholders’ equity. High-tech industries are defined as SIC
codes 283, 357, 366, 367, 382, 384, and 737, following Brown et al. (2009).
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Figure 14: Each dot corresponds to a 3-digit SIC industry classification. The x-axis
plots, for each industry, the R2 value from a fixed-effects regression of cash flow on
lagged Tobin’s q. The y-axis plots, for the same industry, the R2 from a fixed-effects
regression of investment on lagged Tobin’s q. The data are annual Compustat from
1975-2015. Only industries with at least ten observations in Compustat are retained.
Cash flow is defined as income before extraordinary items plus depreciation expense.
Cash flow, investment, and q are all winsorized at the 1st and 99th percentiles.
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Figure 15: This figure plots the time-series of ρ2 and τ 2 estimates recovered from the
cumulant-estimator approach of Erickson, Jiang, and Whited (2014). Each estimate
is calculated from a ten-year window ending in the year labeled on the axis. Solid
lines use the standard definitions of investment and Tobin’s q, while dashed lines use
the total-q and total-investment measures defined in Peters and Taylor (2017).
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Figure 16: Estimates of ρ2, the population R2 of the investment equation on marginal
q, following the cumulant-estimator approach of Erickson et al. (2014). The left pair
of bars uses the standard measure of Tobin’s q, and the right pair uses the intangible
total-q adjustment of Peters and Taylor (2017). Within each pair, the left (gray) bar
plots the estimate of ρ2 for firms with below-median volatility of Tobin’s q, and the
right (black) bar plots the estimate for firms with above-median volatility.
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Figure 17: Estimates of ρ2, the population R2 of the investment equation on marginal
q, following the cumulant-estimator approach of Erickson et al. (2014). The left pair
of bars uses the standard measure of Tobin’s q, and the right pair uses the intangible
total-q adjustment of Peters and Taylor (2017). Within each pair, the right (black)
bar plots the estimate for high-tech firms, and the left (gray) bar plots the estimate
of ρ2 for other firms.
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Figure 18: Estimates of τ 2, the population R2 of the measurement equation of Tobin’s
q on marginal q, following the cumulant-estimator approach of Erickson et al. (2014).
Within each pair, the left (gray) bar plots the estimate of ρ2 for firms with below-
median volatility of Tobin’s q, and the right (black) bar plots the estimate for firms
with above-median volatility.
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Figure 19: Estimates of τ 2, the population R2 of the measurement equation of Tobin’s
q on marginal q, following the cumulant-estimator approach of Erickson et al. (2014).
Within each pair, the right (black) bar plots the estimate for high-tech firms, and the
left (gray) bar plots the estimate of ρ2 for other firms.
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Figure 20: Relationship between investment and q without learning (Model (i) in
Table 5, blue triangles) or with learning (Model (iii) in Table 5, red crosses). In
Model (i), the profit function has constant returns to scale. In Model (iii), the profit
function has decreasing returns to scale (α = 0.9), which leads to measurement error
in the regression and thus a lower slope. The simulations are performed over 100
years at an annual frequency.
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(1) (2) (3) (4)
It/Kt-1 It/Kt-1 It/Kt-1 It/Kt-1

qt-1 0.0777∗∗∗ 0.0658∗∗∗ 0.0377∗∗∗ 0.00470∗∗∗

(0.00498) (0.00272) (0.00163) (0.000531)
Sample Bin 1 Bin 2 Bin 3 Bin 4
Firm FE? Yes Yes Yes Yes
Obs. 34996 37752 38059 37332
R2 0.0258 0.0603 0.0718 0.125

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 1: This table performs panel regressions of investment on lagged Tobin’s q,
using annual data from Compustat. Firms are sorted into bins based on the within-
firm volatility of Tobin’s q, with bin 4 as the highest volatility. Standard errors are
clustered by firm, and the table reports the within-firm R2 of the regression.

(1) (2) (3) (4)
It/Kt-1 It/Kt-1 It/Kt-1 It/Kt-1

qt-1 0.0765∗∗∗ 0.0653∗∗∗ 0.0397∗∗∗ 0.0166∗∗∗

(0.00499) (0.00282) (0.00166) (0.000568)
Sample Bin 1 Bin 2 Bin 3 Bin 4
Firm FE? Yes Yes Yes Yes
Obs. 34912 37704 38114 37409
R2 0.0237 0.0559 0.0768 0.152

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 2: This table repeats the analysis of Table 1, after winsorizing Tobin’s q at the
1st and 99th percentiles.
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(1) (2) (3) (4)
It/Kt-1 It/Kt-1 It/Kt-1 It/Kt-1

qt-1 0.0174∗∗∗ 0.0118∗∗∗ 0.0245∗∗∗ 0.0239∗∗∗

(0.000565) (0.000303) (0.00144) (0.00136)
Sample Non-high-tech High-tech Non-high-tech, High-tech,

pre-1995 pre-1995
Firm FE? Yes Yes Yes Yes
Obs. 113297 34900 46464 9223
R2 0.107 0.221 0.0678 0.211

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 3: This table performs panel regressions of investment on lagged Tobin’s q using
annual data from Compustat. “High-tech” refers to SIC codes 283, 357, 366, 367,
382, 384, and 737, following Brown et al. (2009). The data are annual Compustat
from 1975-2015. Columns 3 and 4 restrict to pre-1995 firm-years. Investment and q
are winsorized at the 1st and 99th percentiles. Standard errors are clustered by firm,
and the table reports the within-firm R2 of the regression.

(1) (2) (3) (4)
It/Kt-1 It/Kt-1 It

tot/Kt-1 It
tot/Kt-1

qt-1 0.00947∗∗∗ 0.0112∗∗∗ 0.0124∗∗∗ 0.00866∗∗∗

(0.000239) (0.000281) (0.000448) (0.000259)
Sample High-tech High-tech Non-high-tech High-tech
Firm FE? No Yes Yes Yes
Year FE? No Yes No No
Obs. 34900 34900 113230 34899
R2 0.218 0.305 0.0802 0.201

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 4: The regressions are as in Table 3, except as noted in each column. Column
1 drops both firm and year fixed effects, and Column 2 includes both firm and year
fixed effects as is done in Peters and Taylor (2017). In columns 3 and 4, R&D is
added to capital expenditures as a measure of intangible investment. Standard errors
are clustered by firm, and the table reports the within-firm R2 of the regression.
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Model Market power Calibration
(1) (2) (3)

Avg. R2 Avg. slope Avg. σ(q)
(i) No learning No (α = 1) σµ = 0, Φ = 0 0.179 0.063 0.184
(ii) Learning I Yes (α = 0.95) σµ = 0.10, Φ = 5 0.349 0.053 0.345
(iii) Learning II Yes (α = 0.90) σµ = 0.15, Φ = 20 0.402 0.038 0.614

Table 5: Simulations of three different models with varying degrees of market power.
Row (i) considers a model without learning and with constant returns to scale,
Π(Kt, θt) = θtKt. Rows (ii) and (iii) consider models with learning and decreas-
ing returns to scale, Π(Kt, θt) = θtK

α
t , α < 1. All other parameters are as in the

baseline calibration (see Section 3). Each simulation contains 100 yearly data points.
The average R2 coefficients and the average slope coefficients from 5,000 regressions
of I/K on average q (V/K) are reported in columns (a) and (b). Column (c) reports
the mean volatility of average q over the 5,000 simulations.
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