
Misallocation or Risk-Adjusted Capital Allocation?

Joel M. David∗

USC

Lukas Schmid†

Duke

David Zeke‡,�

USC

November 18, 2017

Abstract

Standard, frictionless neoclassical theory of investment predicts that the expected cor-

porate marginal product of capital (MPK) depends on �rms' exposure to systematic risk

and the price of that risk. This implies that the cross-sectional dispersion in MPK i)

depends on cross-sectional variation in risk exposures and ii) �uctuates with the price of

risk, and thus is countercyclical. We empirically evaluate these predictions and document

strong support for them. In particular, a long-short portfolio of high minus low MPK

stocks earns signi�cant and countercyclical excess returns forecastable by standard return

predictors. A calibrated investment model suggests that ex ante variation in risk exposure

can rationalize permanent dispersion in MPK. These �ndings suggests that a substan-

tial fraction of dispersion in MPK, often dubbed misallocation, is e�ectively risk adjusted

capital allocation.
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1 Introduction

A large and growing body of work has documented the `misallocation' of resources across

�rms, measured by dispersion in the marginal product of factors of production. The failure

of marginal product equalization has been shown to have potentially sizable negative e�ects

on aggregate outcomes, such as productivity and output. Recent studies have found that even

after accounting for a host of leading candidates as sources of misallocation - for example,

adjustment costs, �nancial frictions, or imperfect information - a large role is played by �rm-

level `distortions,' speci�cally, of a class that are orthogonal to �rm fundamentals and are

permanent to the �rm. Identifying exactly what - if any - underlying economic mechanisms

can lead to this type of distortion has proven puzzling.

In this paper, we propose, empirically test and quantitatively evaluate just such a mech-

anism. Our approach links capital misallocation to systematic investment risks. To the best

of our knowledge, we are the �rst to make the connection between standard notions of the

risk-return tradeo� faced by investors and the resulting dispersion in the marginal product of

capital across �rms. Our point of departure is a standard model of �rm investment in the

face of both aggregate and idiosyncratic shocks. Firms discount future payo�s using a stochas-

tic discount factor that is also a function of aggregate conditions. With little more structure

than this, the framework gives rise to an asset pricing equation governing the �rm's expected

marginal product of capital (MPK): �rms with higher exposure to the aggregate shock have

a permanently higher expected MPK, which appears exactly as what would otherwise be la-

beled a permanent �rm-level distortion. Importantly, this is a statement only about expected

MPK; realized MPKs may di�er across �rms for additional reasons, i.e., uncertainty over future

shocks. In fact, the model implies a beta pricing equation of exactly the same form often used

to price the cross-section of stock market returns. That equation simply states that a �rm's

expected MPK should be linked to the exposure of its MPK to systematic risk, and the latter's

price.

Although this result is quite general, we provide a number of illustrative examples. If we

abstract from aggregate shocks (or assume risk neutrality), expected MPKs are equated across

�rms. In this case the standard notion obtains that relates any dispersion in expected MPK

to misallocation. In any other situation, our beta pricing equation implies that cross-sectional

dispersion in risk exposure should be re�ected in cross-sectional dispersion in expected MPK. If

the utility function is CRRA, for example, expected MPKs are determined by the Consumption

CAPM equation, i.e., by the covariance of each �rm's MPK with aggregate consumption growth.

If aggregate and �rm-level conditions are driven by technology shocks, expected MPKs are

determined by the covariance of the MPK with innovations in the aggregate process. In a
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world driven by multiple risk factors, as is typically considered in the current asset pricing

literature, the average MPK is linked to exposure to these various factors, as well as the factor

prices.

Much of our analysis is devoted to demonstrating that the simple beta pricing equation

inherent in the neoclassical model of �rm investment has substantial empirical content. More

precisely, we state and empirically investigate four predictions of our general framework.

First, the beta pricing equation predicts that exposure to standard risk factors priced in

asset markets is an important determinant of expected MPK. We provide empirical evidence

supporting this prediction in two ways. First, we directly determine the exposure of �rm and

portfolio level MPK to various risk factors emerging in current asset pricing models, from

consumption growth, the market portfolio, the Fama-French factors, and most recently, the

Q-factors, and show that MPKs are indeed signi�cantly related to these factors. Second, given

a variety of empirical challenges to directly computing MPK betas at the �rm level, we exploit

the tight relationship between MPK and investment returns on the one hand, and stock returns

on the other hand, as pointed out, for example, by Cochrane (1991) and Restoy and Rockinger

(1994), and use an asset pricing approach for testing. Speci�cally, we sort stocks into decile

portfolios based on their MPK and evaluate the portfolio returns. We �nd that the expected

excess returns on these decile portfolios are generally increasing in MPK, so that a high minus

low (HML) MPK portfolio earns an annual premium of anywhere from 3% to 6%. We show

that the high MPK portfolios have higher exposure to standard risk factors, consistent with

the prediction of the beta pricing equation, suggesting that a higher MPK is linked to higher

systematic risk.

Consistent with standard asset pricing models, a beta pricing equation does not only entail

a cross-sectional prediction regarding cross-sectional variation in expected MPK, but also a

time-series prediction linked to movements in factor risk prices. In particular, it suggests that

movements in factor risk prices are linked to �uctuations in the conditional expected MPK.

Again, we test this prediction on both direct estimates of expected MPK as well as MPK

sorted stock portfolios. Consistent with the empirical evidence from the return predictability

literature in asset pricing, suggesting a countercyclical price of risk, we indeed �nd the excess

returns on MPK sorted portfolios are predictable and countercyclical, as suggested both by

common return predictors such as credit spreads and the price/dividend ratio.

These tests suggest that risk factors are indeed a signi�cant determinant of MPK, both in the

cross-section and in the time series. Our next predictions and tests aim at further dissecting the

role of risk factors in determining the cross-sectional dispersion in MPK, which has commonly

been associated with capital 'misallocation'. In that regard, the beta pricing equation suggests

that MPK dispersion should be positively related to beta dispersion. In particular, in the cross-

3



section, industries with higher dispersion in betas should display higher dispersion in MPK. We

test this prediction in a two stage procedure that �rst determines betas with respect to standard

risk factors, and then uses the dispersion of the betas as an explanatory variable for industry

level MPK dispersion. Consistent with the neoclassical investment model, we �nd that beta

dispersion is a signi�cant determinant of MPK dispersion, explaining a substantial fraction of

its inherent variation.

The prediction regarding determinants of MPK dispersion has a natural time series analog,

in that movements in factor prices should be linked to �uctuations in MPK dispersion. In

particular, given likely countercyclical risk prices, a frictionless neoclassical model predicts a

countercyclical dispersion in MPK. We test this notion by evaluating the time series proper-

ties of the MPK-HML portfolio, and �nd that its positive expected excess returns are highly

predictable, and in fact countercyclical, as indicated by standard return and macroeconomic

predictors such as credit spreads, excess bond premia, and the price/dividend ratio. This sug-

gests that not only do high MPK �rms earn higher risk premia, but also that the spread in the

implied cost of capital between high and low MPK �rms rises in downturns. In other words,

high MPK �rms, while potentially more productive, become riskier in recessions.

After establishing these empirical results, we interpret them and gauge their magnitudes

through the lens of a quantitative model. To that end, we calibrate and structurally estimate

a simple neoclassical, dynamic investment model with adjustment costs that we augment with

an exogenously speci�ed stochastic discount factor designed to match standard asset pricing

moments, as has become standard in the cross-sectional asset pricing literature, as in Zhang

(2005) and Gomes and Schmid (2010). Our point of departure from these model is that we

allow for ex ante cross-sectional heterogeneity in exposure, that is, beta, with respect to a single

source of risk. This extension allows us to gauge what fraction of dispersion in MPK can be

rationalized by a realistic amount of permanent ex ante heterogeneity in betas, with or without

additional frictions, such as convex adjustements costs. Our preliminary results suggest that

in a simple dynamic model such ex ante heterogeneity can rationalize more than �fty percent

of the empirical dispersion, the rest being accounted for by other frictions, such as adjustment

costs or perhaps �nancial frictions.

Related Literature. Our paper relates to several branches of the literature. First is the

large body of work investigating and quantifying the e�ects of resource misallocation across

�rms, seminal examples of which include Hsieh and Klenow (2009) and Restuccia and Rogerson

(2008). A number of papers have explored the role of particular economic forces in leading to

misallocation. For example, Asker et al. (2014) study the role of capital adjustment costs,

Midrigan and Xu (2014), Moll (2014), Buera et al. (2011) and Gopinath et al. (2015) �nancial
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frictions, and David et al. (2016) information frictions. David and Venkateswaran (2016) provide

a uni�ed theoretical framework and empirical methodology to estimate the contribution of

each of these forces to misallocation and �nd that they can explain only a limited portion

of observed dispersion in the marginal product of capital. These authors conclude that �rm-

speci�c distortions account for the lion's share of misallocation and, speci�cally, point out

the large role of a permanent component of those distortions. We build on this literature by

exploring the implications of a di�erent dimension of �nancial markets for marginal product

dispersion, namely, the risk-return tradeo� faced by risk-averse investors. Importantly, our

theory generates what appears to be a permanent �rm-speci�c `wedge' exactly of the type

found by David and Venkateswaran (2016), but which in our framework is a function of each

�rm's exposure to aggregate risk. The addition of aggregate risk is a key innovation of our

analysis - existing work has abstracted from this channel. We show that the link between

aggregate risk and misallocation is quite tight in the presence of heterogeneous exposures to

that risk.

A growing literature, starting with Eisfeldt and Rampini (2006), investigates the reasons

underlying the observation that capital reallocation is procyclical. This indeed seems puzzling

as given higher cross-sectional dispersion in MPK in downturns one should expect to see capital

�owing to highly productive, high MPK �rms in recessions. Our results bear on that observation

by noting that given a countercyclical price of risk, and a countercyclical premium on the MPK-

HML portfolio, from a risk perspective, capital reallocation to high MPK �rms would require

capital �ow to the riskiest of �rms.

In a related e�ort, Binsbergen and Opp (2017) also investigate the implications of asset

market data for the real economic decisions of �rms. While they focus on the implications of

mispricing in the pricing of �nancial assets for corporate decisions, we focus on misallocation

on the real side. While we investigate the implications of cross-sectional dispersion in expected

returns, we remain agnostic about whether that dispersion comes from mispricing or di�erential

exposure to risk.

Our work exploits the insight, due to Cochrane (1991) and Restoy and Rockinger (1994),

that stock returns and investment returns are closely linked. Indeed, under the assumption

of constant returns to scale, stock and investment returns e�ectively coincide. Crucially, for

our purposes, investment returns are intimately linked with the marginal product of capital.

Balvers et al. (2015) explore and con�rm the close albeit more complicated relationship under

deviations from constant returns to scale. In this context, our work is closely related to the

growing literature that examines the cross-section of stock returns by viewing them from the

perspective of investment returns, starting from Gomes et al. (2006); Liu et al. (2009), and

recently forcefully summarized in Zhang (2017). This literature interprets common risk factors
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as the Fama-French factors through �rms' investment policies, and most recently, shows that

risk factors related to corporate investment patterns themselves capture risks priced in the cross-

section of returns, culminating in the recent Q-factor model. Our objective is quite di�erent

and in some sense turns that logic on its head, in that we examine investment returns and

the marginal product of capital as a manifestation of exposure to systematic risk, most readily

measured through stock returns.

2 Motivation

We consider a discrete time, in�nite-horizon economy. A continuum of �rms, indexed by i,

produce output using capital and labor. Labor is chosen period-by-period in a spot market at

a competitive wage. At the end of each period, �rms choose investment in new capital, which

becomes available for production in the following period so that Kit+1 = Iit+(1− δ)Kit, where

δ is the rate of depreciation.

Let Πit = Y (Xt, Zit, Kit) denote the operating pro�ts of the �rm - revenues net of labor

costs - where Xt and Zit denote aggregate and idiosyncratic shocks, respectively, and Kit the

�rm's level of capital. The analysis can accommodate a number of interpretations of these

shocks, for example, as productivity or demand shifters. We assume the pro�t function takes

a Cobb-Douglas form and is homogeneous in K of degree θ < 1. This structure follows, for

example, when the production function is Cobb-Douglas in capital and labor and �rms face

CES demand curves. In this case, the parameter θ captures both the curvature in production

and demand, as well as the relative shares of capital and labor in production, and operating

pro�ts are proportional to revenues. The marginal product of capital is equal to θ Πit
Kit

.1 The

payout of the �rm in period t is equal to Dit = Πit − Iit.
Firms discount future cash �ows using a stochastic discount factor (SDF) Mt+1, which may

be correlated with the aggregate component of �rm fundamentals, i.e., with Xt. We can write

the �rm's problem in recursive form as

V (Xt, Zit, Kit) = max
Kit+1

Πi (Xt, Zit, Kit)−Kit+1 + (1− δ)Kit + Et [Mt+1V (Xt+1, Zit+1, Kit+1)]

where Et [·] denotes the �rm's expectations conditional on time t information. Standard tech-

niques give the Euler equation

1 = Et [Mt+1 (MPKit+1 + 1− δ)] ∀ i, t (1)

1For example, if the production function is given by Yit = F (Xz, Zit)K
θ1
it N

θ2
it and the demand function is

given by Yit = P−ηit , the curvature parameter θ is equal to
θ1(1− 1

η )
1−θ2(1− 1

η )
.
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where MPKit+1 = ∂Πit+1

∂Kit+1
is the marginal product of capital of �rm i at time t+ 1.

MPK dispersion. An immediate consequence of expression (1) is that expected MPK need

not be equated across �rms; rather, it is only appropriately discounted expected MPK that is

equalized. To the extent that �rms load di�erently on the discount factor, their expected MPKs

will di�er. Assuming a single source of aggregate risk for the sake of illustration, Appendix A

derives the following factor model for expected MPK:

Et [MPKit+1] = αt + βitλt (2)

Here, αt is the `risk-free' MPK, which equals the riskless user cost of capital rft + δ where

rft is the net risk-free rate; βit ≡ − cov(Mt+1,MPKt+1)
var(Mt+1)

measures the exposure, or loading, of the

�rm's MPK on the SDF, i.e., the riskiness of the �rm; and λt ≡ var(Mt+1)
Et[Mt+1]

is the market price of

that risk. In the language of asset pricing, the Euler equation gives rise to a conditional one-

factor model for expected MPK. Expression (2) highlights that expected MPK is not necessarily

common across �rms and is a function of the risk-free return, the �rm's β on the SDF, which

may vary across �rms, and the market price of risk. The cross-sectional variance of date-t

conditional expected MPK is then equal to

σ2
Et[MPKit+1] = σ2

βtλ
2
t (3)

which shows that the extent to which risk considerations lead to dispersion in the MPK depends

on (1) the cross-sectional dispersion in �rm-level β's at date t and (2) the level of the price of

risk. Taking unconditional expectations, the theory can clearly generate persistent dispersion

in MPK, which is equal to the dispersion in required rates of return across �rms:

E [MPKit] = α + βiλ+ cov(βit, λt) (4)

where α = E [rft + δ], βi = E [βit] and λ = E [λt] denote the unconditional expectations of the

risk-free MPK, conditonal MPK factor betas and factor prices, respectively. So long as the

relationship between mean β's and the time-series correlation of those β's with the price of risk

is weak, we can write the variance of mean MPK approximately as2

σ2
E[MPK] ≈ σ2

βλ
2 (5)

2In line with the results in Lewellen and Nagel (2006), we �nd the time-series variation in β's to be quite
small, suggesting the validity of the approximation. In the case of that the β of a �rm is constant, for example,
which we assume in our quantitative model, the expression is exact.
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where σ2
β denotes the cross-sectional variance of unconditional expected β's. We note that this

observation generalizes in a straightforward manner to environments more recently considered

in the cross-sectional asset pricing literature emphasizing the presence of multiple aggregate

risk factors. Most prominently, beyond excess returns on the market portfolio and innovations

to aggregate consumption growth as considered in the classical CAPM and Breeden-Lucas

Consumption CAPM, these risk factors have been linked to excess returns on size, as well as

book-to-market sorted portfolios (Fama-French factors), or investment returns or pro�tability

(the Q-factor model of Hou et al. (2015) and Zhang (2017)).

The strength of the mechanism linking persistent dispersion in MPK to exposure to ag-

gregate risk can be understood by inspection of expression (5) - predicted MPK dispersion is

increasing in the dispersion in β's and also in the market price of risk, λ. A key observation

underlying our analysis is that asset pricing data suggest that risk prices are rather high. A

lower bound is given by the Sharpe ratio on the market portfolio, estimated to be around 0.4.

However, even easily implementable trading strategies such as those based on value-growth

portfolios, or momentum, suggest numbers closer to 0.8, while hedge fund strategies report

Sharpe ratios in excess of one. Taken at face value, these numbers suggest the possibility for

substantial MPK dispersion - even in frictionless models - after taking risk exposure in ac-

count. Our quantitative work in Section 4 quanti�es this link using data on risk prices and

cross-sectional variation in expected stock market returns.

Empirical Predictions. Even under the general structure we have outlined thus far, the

theory has a good deal of empirical content. Speci�cally, the expressions laid out above contain

a number of both (1) cross-sectional and (2) time-series predictions:

1. Exposure to standard risk factors is a determinant of expected MPK. Expression (2) shows

that the same factors that determine the cross-section of stock returns - namely, exposure to

the SDF - determine the cross-section of MPK. Firms with a higher loading on the SDF, i.e.,

higher β's, should have higher conditional expected MPK.

2. Predictable variation in the price of risk, λt, leads to predictable variation in mean expected

MPK. In particular, the mean conditional expected MPK should increase when the price

of risk does. This is the time-series equivalent of expression (2) - holding �xed the distri-

bution of β's, movements in λt should positively a�ect the mean expected MPK. Since the

price of risk is known to be countercyclical, this implies that the mean expected MPK is as well.

3. MPK dispersion is related to β dispersion. Expression (5) shows that unconditional variation
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in the cross-section of MPK is proportional to the variation in β. Segments of the economy, for

example, industries, with higher dispersion in β should display higher dispersion in MPK.

4. MPK dispersion is positively correlated with the price of risk. Expression (3) also has a

time-series prediction linking MPK dispersion to time variation in the price of risk. For a given

degree of cross-sectional dispersion in β, when required compensation for bearing risk increases,

MPK dispersion should increase as well.

Illustrative examples. Section 3 investigates each of these predictions in detail. Before

doing so, however, it is useful to consider a number of more concrete illustrative examples

(derivations for this section are in Appendix A).

Example 1: no aggregate risk (or risk neutrality). In the case of no aggregate risk, we have

βit = 0 ∀ i, t, i.e., all shocks are idiosyncratic to the �rm. Expressions (2) and (3) show that

there will be no dispersion in expected MPK and for each �rm, Et [MPKit+1] = rf + δ, which

is simply the riskless user cost of capital (which is constant in the absence of aggregate shocks).

This is the standard result from the stationary models widely used in the misallocation litera-

ture where without frictions, expected MPK should be equalized across �rms.3 It is straight-

forward to show this expression also holds in an environment with aggregate shocks but risk

neutral preferences, which impliesMt+1 is simply a constant (equal to the time discount factor).

Example 2: CAPM. In the CAPM, the SDF is linearly related to the market return, i.e.,

Mt+1 = a− bRm,t+t for some constants a and b. Because the market portfolio is itself an asset

with a β of one, it is straightforward to derive

Et [MPKit+1] = αt +
cov (Rm,t+1,MPKit+1)

var (Rm,t+1)︸ ︷︷ ︸
βit

Et [Rmt+1 −Rf,t+1]︸ ︷︷ ︸
λt

i.e., expected MPK is determined by the covariance of the �rm's MPK with the market return

(i.e., its market β), which is the the risk factor in this environment. The market price of risk is

equal to the expected excess return on the market portfolio, i.e., the equity premium.

Example 3: CCAPM. In the case that the utility function is CRRA with coe�cient of rel-

ative risk aversion γ, standard approximation techniques give the pricing equation from the

3With the time-to build for capital and uncertainty over upcoming shocks in our model, there may still be
dispersion in realized MPK, but not in expected terms, and so these forces do not lead to persistent deviations
from MPK equalization for a particular �rm.
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consumption capital asset pricing model:

Et [MPKit+1] = αt +
cov (∆ct+1,MPKit+1)

var (∆ct+1)︸ ︷︷ ︸
βit

γvar (∆ct+1)︸ ︷︷ ︸
λt

where ∆ct+1 denotes log consumption growth. Expected MPK is determined by the covariance

of the �rm's MPK with consumption growth (its consumption β), which is now the risk factor.

The market price of risk is the product of the coe�cient of relative risk aversion and the

variability of consumption growth.

In Section 4, we follow the recent literature on production-based asset pricing and explicitly

model the sources of uncertainty as arising from technology shocks, both at the �rm and

aggregate level, and quantify the implications of those shocks for mpk dispersion.

3 Empirical Results

In this section we investigate the empirical predictions outlined in Section 2.

Data. Our data come primarily from the Center for Research in Security Prices (CRSP) and

Compustat. We use data on non�nancial �rms with common equities listed on the NYSE,

NASDAQ, or AMEX over the period 1962 to 2014. We supplement this panel with time-

series data on market factors and aggregate conditions related to the market price of risk. The

market factors we consider are the Fama and French (1992) factors, Hou, Xue, and Zhang (2015)

investment-CAPM factors, as well as the growth rate of non-durable and services consumption

from the Bureau of Economic Analysis (BEA). We also use data on aggregate macroeconomic

and �nancial market variables from the BEA and the Gilchrist and Zakrajsek (2012) (GZ)

credit spread.4 We measure the �rm's capital stock, Kit, as the (net of depreciation) value of

property, plant and equipment (Compustat series PPENT) and �rm revenue, Yit, as reported

sales (series SALE). Ignoring constant terms, which will play no role in our analysis, we measure

the marginal product of capital (in logs) as mpkit = yit − kit.5

We can now revisit the main predictions from Section 2.

1. Exposure to standard risk factors is a determinant of expected MPK. To investigate this

implication of our framework, Table 1 assesses the relationship between MPK and both con-

temporaneous and future excess stock returns. We sort �rms into 10 portfolios based on their

4We obtain measures of the GZ spread from Simon Gilchrist's website.
5Recall that in our setup, operating pro�ts are proportional to revenues, making this a valid measure of the

mpk.
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year t MPK, where portfolio 1 contains low MPK �rms and portfolio 10 high MPK ones. We

then compute the contemporaneous and one-period ahead equal-weighted excess stock return

to each portfolio. Following Fama and French (1992), we use the MPK reported by �rms in

their �scal-year-end �ling in date t-1 with �rm returns from July of year t to June of year t+1

when computing future returns. We additionally compute excess returns on on a high-minus-

low portfolio (MPK-HML), which is an annually rebalanced portfolio that is long on stocks in

the highest MPK portfolio and short on stocks in the lowest.

Table 1: Excess Returns on MPK Sorted Portfolios

Portfolio
Low 2 3 4 5 6 7 8 9 High MPK-HML

Panel A: Not Industry-Adjusted
ret 6.026* 9.288** 9.258** 10.26*** 10.65*** 12.21*** 12.86*** 14.57*** 15.20*** 17.69*** 11.11***

(1.68) (2.44) (2.42) (2.72) (2.86) (3.13) (3.11) (3.36) (3.39) (3.74) (4.05)
ret+1 6.632* 10.48*** 11.19*** 12.68*** 12.59*** 13.25*** 13.46*** 13.01*** 13.22*** 13.58*** 6.583**

(1.87) (2.83) (2.99) (3.44) (3.45) (3.36) (3.30) (3.12) (3.03) (3.00) (2.46)

Panel B: Industry-Adjusted
ret 8.909* 8.208* 9.408** 9.386** 10.06*** 11.58*** 11.05*** 13.80*** 16.03*** 17.67*** 8.870***

(1.71) (1.95) (2.41) (2.55) (2.76) (3.05) (2.86) (3.28) (3.45) (3.60) (5.17)
ret+1 10.11* 11.48*** 10.88*** 11.73*** 11.15*** 11.95*** 11.39*** 13.33*** 13.08*** 13.20*** 3.286**

(1.96) (2.79) (2.85) (3.15) (3.11) (3.21) (2.98) (3.35) (3.03) (2.81) (1.99)

Notes: rEt denotes equal-weighted contemporaneous annual excess stock returns (over the risk-free rate) measured in the year of the portfolio formation
from January to December of year t. ret+1 denotes the analogous future returns, measured in the year following the portfolio formation, from July of
year t + 1 to June of year t + 2. Industry adjustment is done by de-meaning returns by industry-year, where an industry is de�ned as a 4 digit SIC
code. t-statistics in parentheses. Signi�cance levels are denoted by: * p < 0.10, ** p < 0.05, *** p < 0.01

Table 1 reveals a strong relationship between MPK and stock returns - portfolios with

higher MPK earn higher excess returns. Panel A shows that the di�erence in contemporaneous

returns between high and low MPK �rms, i.e., the excess return on the MPK-HML portfolio

is about 11% annually and remains high, about 6.5%, for one-period ahead returns. Both

contemporaneous and future spreads are statistically di�erent from zero at the 95% level. Firms

that o�er high stock returns tend to also have MPKs, both in a realized and an expected sense.

The focus in the misallocation literature is generally on within-industry variation in the

MPK. Panel B of Table 1 reports within-industry results, de�ned at the 4-digit SIC level. To

compute these values, from each return observation we subtract the mean return within that

industry-year.6 Although the magnitudes fall somewhat, the relationship between MPK and

stock returns remains strong even when comparing across �rms within a particular industry,

both in an economic and statistical sense - the MPK-HML contemporaneous excess return is

almost 9% annually and the future excess return almost 3.5%. Both are statistically signi�cant

at the 95% level.

6We de�ne an industry as a 4-digit SIC code and examine industry-year pairs with at least 10 observations.
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2. Predictable variation in the price of risk λt leads to predictable variation in expected MPK.

Expression (2) implies that the market price of risk, λt, is positively related to the level of

expected MPK in the following period. To test this, we estimate regressions of �rm mpk

on three lagged (by one year) measures related to the price of risk: 1) the price/dividend

ratio; 2) the Gilchrist and Zakrajsek (2012) (GZ) spread, a high-information and duration-

adjusted measure of the mean credit spread; and 3) the Excess Bond Premium, which measures

the portion of the GZ spread not attributable to default risk. We control for the changing

composition of �rms in the following way: using only those �rms where our measure of mpk

is observed for the �rm in consecutive quarters, we compute changes in mean mpk for every

pair of years. We then use those changes to construct a synthetic composition-adjusted mean

mpk which is una�ected by new additions or deletions from the dataset. Table 2 reports the

results of these regressions. In line with the theory, column (3) and (2) show that the GZ spread

and the excess bond premium (which are likely positively correlated with the market price of

risk) predict higher future mpk, while column (1) shows that the price-dividend ratio (likely

negatively correlated with the market price of risk) predicts lower future mpk.

Table 2: Predictability of Et [MPKit]

(1) (2) (3)
PD Ratio -0.0114∗∗∗

(-4.61)
GZ Spread 0.0452∗∗∗

(3.01)
Excess Bond Premium 0.0603∗∗

(2.59)
Constant -0.00653 -0.0803∗∗∗ -0.00595

(-0.41) (-2.73) (-0.36)
Observations 148 148 148
R2 0.142 0.094 0.056

Notes: Table reports time-series regressions of average composition-
adjusted mpk on lagged (by one year) measures of the price of risk.
Long-term trends in mpk and the price/dividend ratio are removed us-
ing a one-sided hp �lter. t-statistics are in parentheses. t-statistics
in parentheses, which are computed using Newey-West standard er-
rors. Signi�cance levels are denoted by: * p < 0.10, ** p < 0.05, ***
p < 0.01. All observations are observed at the quarterly frequency.

3. MPK dispersion is related to β dispersion. Expression (5) implies that for particular groups

of �rms, dispersion in expected mpk should be positively related to the dispersion in β. In

particular, this suggests that dispersion of mpk within an industry, a common measure of

misallocation, is positively correlated with dispersion in expected stock returns and β's. We

investigate this prediction using variation in the dispersion of �rm-level β's across industries.
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For each industry in each year, we compute the standard deviation of mpk, σ (mpk), expected

returns, σ (E [ret]) and β's, σ (β) and estimate a pooled regression of industry-level mpk disper-

sion on the dispersion in stock returns and β's. To avoid potential biases from the realization

of shocks, we lag the independent variables (dispersion in expected stock returns and β's) by a

year. We detail our computation of �rm-level measures of β and excess returns in Appendix B.

Table 3 reports the results of these regressions and demonstrates that indeed, industries

with higher dispersion in expected stock returns and β's exhibit greater dispersion in mpk.

Column (1) reveals this fact using expected returns calculated from the Fama-French 3 factor

model. Column (2) shows this relationship continues to hold using expected returns predicted

using β's only. The Fama-French model explains between about 25% and 30% of the variation

in MPK dispersion across industry-years. Column (3) estimates a multiple regression of mpk

dispersion on each of the three individual factors - dispersion in each is signi�cantly related

to mpk dispersion. In column (4) we take a slightly di�erent approach - we estimate more

direct measures of �mpk β's� by regressing �rm-level mpk directly on the Fama-French factors

(rather than stock returns). For each industry-year, we compute the standard deviation of

these β's. The results in column (4) show that dispersion in these alternative measures of

β are also signi�cantly related dispersion in mpk. The relationships are highly statistically

signi�cant and the R2 remains close to 25%. In Table 9 in Appendix B, we report results from

related regressions where we average our dispersion measures across years for each industry.

The �ndings there are broadly similar (indeed, slightly stronger).7

4. MPK dispersion is positively correlated with the price of risk. Expression (2) implies that

the price of risk is positively related to mpk dispersion. We investigate this prediction in two

ways. First, we show that the measures of the market price of risk considered before (the PD

ratio, GZ spread, and excess bond premium) predict time series variation in measures of MPK

dispersion. Second, we show that the future expected return on a long-short MPK portfolio

are also predicted by these measures of the market price of risk.

We show that both the unconditional dispersion in mpk, and the dispersion of mpk within

industries are positively correlated with the lagged price of risk. We control for the changing

composition of �rms in the following way: using only those �rms where our measure of mpk is

observed for the �rm in consecutive quarters, we compute changes in the standard deviation

of mpk (or of industry-demeaned mpk for the within-industry dispersion) for every pair of

7Our results are also robust to using a number of di�erent asset pricing models to compute measures of β
and expected returns, including CAPM, the Hou et al. (2015) Investment-CAPM, and the Consumption-CAPM
models. This relationship is robust to a variety of di�erent controls and industry de�nitions as well. Table 10 in
Appendix B displays the same regression as in Table 3, but with year �xed-e�ects (reporting within-year R2),
which generates similar results as well.
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Table 3: Industry-level Dispersion in mpk, Stock Returns and β

(1) (2) (3) (4)
σ(E[ret]) 2.542∗∗∗

(34.14)
σ(Eβ[ret]) 11.63∗∗∗

(31.43)
σ(βMKT ) 0.244∗∗∗

(12.22)
σ(βHML) 0.120∗∗∗

(10.63)
σ(βSMB) 0.116∗∗∗

(8.54)
σ(βCAPM,MPK) 0.137∗∗∗

(9.30)
σ(βHML,MPK) 0.0412∗∗∗

(3.90)
σ(βSMB,MPK) 0.0549∗∗∗

(7.87)
Observations 2721 2746 2734 1427
R2 0.300 0.265 0.306 0.219

Notes: E [ret] is the expected return computed from a Fama-Macbeth regression.
E [ret (β)] is the expected return predicted from the β's of that regression alone. β'
denotes the stock return β on the FF factors and βMPK the mpk β on the same fac-
tors. t-statistics are in parentheses. Signi�cance levels are denoted by: * p < 0.10,
** p < 0.05, *** p < 0.01

years. We then use those changes to construct a synthetic composition-adjusted measure of

the dispersion of mpk which is una�ected by new additions or deletions from the dataset.

Table 4 displays a regression of the standard deviation of log(mpk) (both within industries and

unconditional) on lagged (by one year) measures of the price/dividend ratio, GZ spread, and

excess bond premium. All three measures of the business cycle and the market price of risk

signi�cantly predict mpk dispersion, and in the direction our theory would suggest: The GZ

Spread and excess bond premium predict greater mpk dispersion, while the PD ratio predicts

lower mpk dispersion.

As a �nal test of this prediction, we construct a long-short MPK portfolio and investigate

its relation with market price of risk. The portfolio is long the top decile of MPK �rms and

short the bottom decile, re-balancing every every June based on MPK from the previous year.

Table 5 reports a regression of the cumulative twelve month returns on the long-short MPK

portfolio on the Pd ratio, GZ spread, and excess bond premium. The GZ spread and excess

bond premium rate predict higher future returns on the MPK portfolio, while the PD ratio

predicts lower future returns.
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Table 4: Time-series Regression of MPK Dispersion

σ(LMPK) Within Industry Unconditional
PD Ratio -0.00188∗∗∗ -0.00502∗∗∗

(-3.01) (-7.24)

GZ Spread 0.0123∗∗∗ 0.0221∗∗∗

(3.69) (3.53)

EB Premium 0.0271∗∗∗ 0.0472∗∗∗

(4.41) (4.72)

Constant 0.000700 -0.0198∗∗∗ -0.000349 0.0000136 -0.0362∗∗∗ -0.00110
(0.16) (-2.96) (-0.08) (0.00) (-2.86) (-0.20)

Observations 148 148 148 148 148 148
R2 0.054 0.095 0.156 0.200 0.161 0.244

Notes: We regress our measure of composition-adjusted MPK Dispersion (both within industry disper-
sion or unconditional) on time-series factors. Long-term trends in mpk dispersion and the price/dividend
ratio are removed using a one-sided hp �lter. t-statistics are in parentheses, computed using Newey-West
standard errors. Signi�cance levels are denoted by: * p < 0.10, ** p < 0.05, *** p < 0.01. All observa-
tions are quarterly.

4 Quantitative Analysis

In this section, we use a more detailed version of the investment model laid out above to quanti-

tatively explore the extent to which risk considerations can lead to MPK dispersion. The model

is kept deliberately simple in order to isolate the impact of our basic mechanism, namely disper-

sion in exposure to systematic risk. The model consists of two building blocks: (1) a stochastic

discount factor, which we directly parameterize to be consistent with salient patterns in �nan-

cial markets and (2) a cross-section of heterogeneous �rms, which make optimal investment

decisions in the presence of �rm-level and aggregate risk, given the stochastic discount fac-

tor. Specifying the stochastic discount factor exogenously allows to sidetrack challenges with

generating empirically relevant risk prices in general equilibrium, and focus on gauging the

quantitative strength of our mechanism.

Heterogeneity in risk exposures. Consistent with our assumption Section 2, �rm operat-

ing pro�ts are given by

Πit = Xβi
t ZitK

θ
it, θ < 1 (6)

Firm productivity (in logs, denoted by lowercase) is equal to βixt + zit, where βi captures the

exposure of �rm i to the aggregate shock. Heterogeneity in this exposure is a key element of

our framework - cross-sectional variation in βi will lead directly to dispersion in expected mpk.
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Table 5: Predictive Regression of Equal Weighted MPK Portfolio Re-
turn, Industry Adjusted

Year-Ahead Cumulative Return
PD Ratio -0.000456∗

(-1.70)

GZ Spread 0.00384∗∗

(2.31)

Excess Bond Premium 0.00580∗∗

(2.36)

Constant 0.00921∗∗∗ 0.00256 0.00892∗∗∗

(8.05) (1.01) (8.42)
Observations 152 152 152
R2 0.048 0.128 0.097

Notes: The dependent variable is the equal-weighted returns from going long �rms
in the top decile of MPK (after demeaning by sic4) and short the bottom decile,
for the following twelve months. Long-term trends in the price-dividend ratio are
removed using a one-sided HP �lter. t-statistics are in parentheses, computed us-
ing Newey-West standard errors. Signi�cance levels are denoted by: * p < 0.10, **
p < 0.05, *** p < 0.01

The shocks follow AR(1) processes8

xt+1 = ρxxt + εt+1, εt+1 ∼ N
(
0, σ2

ε

)
zit+1 = ρzzit + εit+1, εit+1 ∼ N

(
0, σ2

ε̃ − β2
i σ

2
ε

)
Stochastic discount factor. In line with the vast literature on cross-sectional asset pricing in

production economies, we parameterize directly the pricing kernel without explicitly modeling

the consumer's problem. In particular, we follow Zhang (2005) and specify the SDF (in logs)

as

mt+1 = log ρ+ γt(xt − xt+1),

where

γt = γ0 + γ1xt

and γ0 > 0 and γ1 < 0. This formulation allows us to capture in a simple manner a high and

time varying, and as a matter of fact, countercyclical (since γ1 < 0) price of risk, as observed in

the data. Additionally, directly parameterizing γ0 and γ1 enables the model to be quantitatively

8The variance of the idiosyncratic shock ensures that all �rms have the same expected value of the innovations
in productivity Et

[
eβiεt+1+εit+1

]
= e

1
2σ

2
ε̃ .
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consistent with key moments of asset returns, which are important for our analysis.

MPK dispersion This setup is consistent with the key features of the data revealed in

Section 2. Speci�cally, we show in Appendix A that the realized mpk of �rm i in period t + 1

is equal to

mpkit+1 = αt + εit+1 + βiεt+1 + βiγtσ
2
ε (7)

where αt is a time-varying term that is constant across �rms, so does not lead to MPK disper-

sion. Dispersion in realized MPK can be due to uncertainty over the realization of shocks, as

well as a risk premium term that is persistent at the �rm level and depends on (1) the �rm's

exposure to the aggregate shock βi (and is increasing in βi) and (2) the time-t price of risk,

γtσ
2
ε , which is the conditional volatility of the SDF.

Expression (7) also makes clear that cross-sectional di�erences in the expected MPK only

depend on the last (risk-premium) term:

Et [mpkit+1] = αt + βiγtσ
2
ε ⇒ σ2

Et[mpk] = σ2
β

(
γtσ

2
ε

)2
(8)

Dispersion in expected MPK depends only on dispersion in �rm-level β's, i.e., di�erences in

exposure to the aggregate shock and the price of risk. Intuitively, from expression (7), dispersion

in the realized MPK is composed of both transitory components due to uncertainty and a

persistent component due to the risk premium. The transitory components, however, are iid

over time and thus lead to purely temporary deviations in MPK (this is true even if shocks are

autocorrelated); the risk premium, on the other hand, leads to persistent deviations, in which

�rms that are more exposed to aggregate shocks, and so are riskier, will feature persistently

high mpk deviations. Further, dispersion will be greater when the market price of risk γtσ
2
ε is

higher. Notice that the price of risk is countercyclical in the model, since γt is higher in bad

times, i.e., when xt is low. These are the two key implications from Section 2 - cross-sectional

mpk dispersion is increasing in (1) dispersion in �rm-level β's and (2) the market price of risk.

The remainder of the analysis primarily goes towards quantifying these two objects.

4.1 The Cross-Section of Expected Stock Returns and MPK

In this section, we use a simpli�ed version of the model - namely, with a constant price of

risk - to derive a sharp link between a �rm's expected mpk its expected stock return. This

connection provides a novel empirical strategy to quantify the mpk dispersion that arises from

risk considerations. In Section 4.4 we add back in a time-varying price of risk to capture the

countercyclicality of thempk dispersion, but there we show that very similar insights go through
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(and further, the implications of our theory for the average degree of dispersion remains similar

to the results from the simpler model here). Our key �nding in this section is that the �rm's

expected stock return is an a�ne transformation of its expected mpk. This link, �rst, justi�es

our use of data on expected stock returns and stock return β's as a proxy for expected mpk

in Section 3 and second, shows that the dispersion expected stock returns puts tight empirical

discipline on the dispersion in expected mpk arising from risk channels - indeed, they are

proportional to one another. We use this link to provide intuitive, transparent estimates of

expected mpk dispersion that is due to variation in risk premia.

Consider a simpli�ed version of the model in which γ1 = 0, i.e., the price of risk is constant.9

From the previous section, cross-sectional dispersion in expected mpk is given by

Et [mpkit+1] = αt + βiγ0σ
2
ε ⇒ σ2

Et[mpk] = σ2
β

(
γ0σ

2
ε

)2
(9)

Next, Appendix A.3 derives a log-linear approximation to the stock market return, which reveals

that the dispersion in expected excess stock returns is given by

Et
[
reit+1

]
=

1

ψ1

βiγ0σ
2
ε ⇒ σ2

Et[r] =

(
1

ψ1

)2

σ2
β

(
γ0σ

2
ε

)2
(10)

where ψ1 is a (constant) function of parameters. Comparing expressions (9) and (10) shows

�rst, that expected stock returns are simply an a�ne transformation of expected mpk, and

second, the dispersion in expected returns is proportional to the dispersion in expected mpk,

with the constant of proportionality given by ψ2
1 (in variance space). Thus, we have:

σ2
Et[mpk] = ψ2

1σ
2
Et[r] (11)

Expression (11) reveals a tight connection between cross-sectional variation in expected stock

returns and expected mpk. The intuition is that the e�ects of risk premia are all embedded in

the cross-section of expected stock returns. Once that is object is known, the link to expected

mpk only depends on transforming those returns into returns on productive capital. The

expression points to a simple way of quantifying dispersion in the expected MPK due to risk

- measure the cross-sectional variance of expected stock market returns, the parameters inside

the constant ψ1 and apply the formula in the expression.

A key object is the multiplier ψ1. It depends only on four parameters - the rate of time

discount, ρ, the persistence of aggregate shocks, ρx, the curvature of the pro�t function, θ,

and the rate of depreciation, δ. (12) expresses the multiplier in terms of our parameters, while

9Deriving expressions for expected stock returns is possible, though more complicated, with a time-varying
price of risk. However, similar insights go through in that case as well.
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Proposition 1 denotes its properties with respect to these parameters.

ψ1 =

(
1− ρρx
1− ρ

) 1
ρ

+ (1− θ) δ − 1
1
ρ

+ δ − 1
(12)

Proposition 1. If ρ, θ ∈ (0, 1), δ, ρx ∈ [0, 1], then

1. ψ1 > 0

2. ψ1 is increasing in ρ

3. ψ1 is decreasing in ρx

4. ψ1 is decreasing in δ

5. ψ1 is weakly decreasing in θ (strongly decreasing if δ > 0)

Intuitively, expected stock market returns re�ect the long-lived e�ects of persistent (but

not permanent) realized shocks, i.e., their e�ects on the totality of discounted expected future

pro�ts. For patient investors, i.e., with a high ρ, these shocks lead to smaller changes in the

value of discounted pro�ts, since more of this value is derived from future pro�ts, which are

in the long-run independent of current shocks, and so smaller variation in expected returns,

increasing the multiplier. The higher is the persistence of the shocks, ρx, the greater e�ect they

have on the sum of discounted pro�ts, increasing return variation and reducing the multiplier.

Finally, the lower is curvature (i.e., the larger is θ), the smaller are future pro�ts (e.g., in the

limit, as θ → 1, pro�ts go to zero), reducing the multiplier.10 (13) shows that the multiplier

can also be written as a function of the ratio of market cap to pro�ts (in steady-state), rhox,

and rho.

ψ1 =

(
1

ρ
− ρx

)
P

Π
(13)

Importantly, the multiplier is completely independent of parameters that govern the aggre-

gate risk premium, i.e., γ0 and and σ2
e , and idiosyncratic variation in risk premia, i.e., σ2

β , as

well as of the parameters that govern the idiosyncratic shock process. The second property is

due to the fact that idiosyncratic risk is not priced. The �rst is because all risk considerations

are implicitly embedded in the cross-section of stock market returns. In other words, to quan-

tify risk considerations using expression (11) we do not need to explicitly take a stand on the

10As mentioned, the multiplier is decreasing in δ, but it turns out to be not very sensitive to this parameter.
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nature of risk and its price or the cross-sectional variation in risk exposure - all of these forces

are already re�ected by the dispersion in expected stock market returns.

Risk-based dispersion in expected mpk. To use expression (11) to quantify mpk disper-

sion, we must parameterize ρ, ρx, θ and δ, as well as estimate the cross-sectional dispersion in

expected stock returns. We set the annual discount rate ρ to 0.97, which is consistent with a

quarterly discount rate of about 0.99. To estimate the persistence of aggregate shocks, we use

data on quarterly TFP growth from John Fernald.11 Under our AR(1) assumption, this gives a

value of 0.095 quarterly (0.815 annually). We set the curvature parameter θ to 0.62, which is a

common value in the literature, after taking into account the e�ects of labor market decisions.12

We set δ to 0.02 quarterly, which is consistent with an annual depreciation rate of 8%. Using

expression (16), these values imply that the (annual) multiplier, ψ1, is equal to 15.

To estimate the cross-sectional variation in expected stock returns, we must choose an asset

pricing model. To be consistent with the broad literature, we use the Fama-French 3 factor

model, and estimate a cross-sectional variance of expected returns equal to 0.018.

This suggests that risk-adjusted capital allocation generates a cross-sectional variance of

log(MPK) equal to 0.27. This accounts for 41% of the cross-sectional variance of log(MPK),

and 57% of the persistent component of the cross-sectional variance in log(MPK).13

4.2 Other Distortions

A natural question to ask is to what extent our results are a�ected by the presence of other fric-

tions/distortions that lead to MPK dispersion (in addition to one-period uncertainty). Recent

work has pointed to a number of such factors, including �nancial frictions, variable markups

or policy-induced distortions. Moreover, it has been pointed out that attempts to identify one

of these forces - while abstracting from others - may lead to misleading conclusions, and it

seems natural to wonder whether this insight applies here. To answer this question, we ex-

ploit the tractability of our framework to introduce a `wedge' a la Hsieh and Klenow (2009)

into the �rm's �rst order condition, τit+1. Speci�cally, we assume that the �rms' revenues are

taxed/subsidized at rate 1 − eτit+1 (so that the �rm keeps a portion eτit+1). We follow David

and Venkateswaran (2016) by using a �exible speci�cation on this wedge, which allows both for

11The data are available at http://www.frbsf.org/economic-research/indicators-data/total-factor-
productivity-tfp/.

12See, e.g., DAVID et al DAVID/VENKY and COOPER/HALTIWANGER.
13The persistent component is de�ned as the cross-sectional variance of the average MPK �rms have other

their lifetime.
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time-variation and correlation with �rm productivity. Speci�cally, we formulate the wedge as

τit+1 = ν (βixt+1 + zit+1)− ξit+1 (14)

The wedge is composed of two pieces. The �rst component is correlated with the �rm's

productivity, where the degree of correlation is captured by ν. If ν < 0, the wedge discourages

(encourages) investment by high (low) productivity �rms. If ν > 0, the opposite is true. The

second component is uncorrelated with �rm characteristics and can be either time-varying

or �xed. Low values of ξ spur greater investment by �rms irrespective of their underlying

characteristics. For simplicity, we assume the �rm knows the uncorrelated piece, ξit+1 when

it chooses period t investment, i.e., kit+1. Further, we assume that both components of the

wedge are uncorrelated with the �rm's β. David and Venkateswaran (2016) show that the

mpk tends to be well-described by this structure and that the correlated piece can capture,

for example, models of �nancial frictions (due, e.g., to liquidity costs) and markups due to

monopoly power, in addition to policy-related distortions. We loosely refer to the wedge as a

�distortion,� although we do not take a stand on whether it stems from e�cient factors or not -

simply that there are other frictions in the reallocation process. Under this structure, we derive

in Appendix A.4 the following expression for the realized MPK:

mpkit+1 = αt + εit+1 + βiεt+1 − νρzzit − νβiρxxit + ξit+1 + (1 + ν) βiγ0σ
2
ε (15)

= αt + εit+1 + βiεt+1 − νEt [zit+1 + βixit+1] + ξit+1 + (1 + ν) βiγ0σ
2
ε

The distortion has several e�ects on the realized MPK. The �rst two terms capture the e�ects

of uncertainty over shocks and are identical to those in the baseline case. Next, the mpk

includes a component that re�ects the severity of the correlation distortion, ν, and depends

on the �rm's expectations of period t + 1 productivity - for example, if ν < 0 (which turns

out to be the empirically relevant case), the distortion discourages (encourages) investment by

high (low) productivity �rms, leading to mrpk deviations. Next, the mpk also depends on the

uncorrelated component of distortions ξ - �rms with a high realization of ξit+1 will invest more

than their fundamentals would dictate. Finally, the last term re�ects the risk premium and

shows that correlated distortions can scale the risk premium up or down, depending on whether

ν is positive or negative. If ν < 0, for a given βi and price of risk γ0σ
2
ε , as the distortion becomes

more severe (ν becomes more negative), the magnitude of the risk adjustment term falls (for

example, as ν → −1, the risk adjustment disappears altogether).

From expression (15), we can derive the expected mpk as

Et [mpkit+1] = αt − νρzzit − νβiρxxt + ξit+1 + (1 + ν) βiγ0σ
2
ε
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and its cross-sectional variance:

σ2
Et[mpk] = ν2

(
ρ2
zσ

2
z + ρ2

xx
2
tσ

2
β

)
+ σ2

ξ + (1 + ν)2 σ2
β

(
γ0σ

2
ε

)2

Dispersion in Et [mpk] is generated by three forces - �rst, the correlated component of the

distortion, ν (its contribution to mpk dispersion also depends on the cross-sectional variance

of expected productivity, which is the term in parentheses); second, the variance of the un-

correlated component; and third, the variance of the (scaled) risk premium, which decreases

as ν becomes more negative, i.e., goes towards -1 (realized mpk's have additional sources of

variation coming from the dispersion in realized shocks, εit+1 and εt).

Appendix A.4 proves that stock market returns are, to a �rst-order approximation, unaf-

fected by the introduction of other distortions. Thus, a modi�ed version of our approach in

Section 4.1 is still valid: dispersion in expected mpk stemming from the risk premium term is

proportional to dispersion in expected stock market returns, where the factor of proportionality

is now (ψ1 (1 + ν))2, where ψ1 is as de�ned in that section. In other words, dispersion in the

mpk, both in realized and expected terms, can be coming from a host of other sources in addi-

tion to the risk-premium terms that is the focus of our analysis. However, even in the presence

of these alternative factors, we can still obtain an unbiased estimate of the contribution coming

from the risk-premium channel as

(1 + ν)2 σ2
β

(
γ0σ

2
ε

)2
= (ψ1 (1 + ν))2 σ2

E[r]

If we follow David and Venkateswaran (2016) and specify ν = −0.3, the correlated distortion

reduces the amount of cross-sectional MPK dispersion generated by our channel by about half,

as �rms' responses (in terms of capital choices) to shocks and incentives are dampened.

4.3 Directly Measuring Productivity β's

Our baseline approach to quantifying mpk dispersion arising from ex-ante risk exposures used

the tight link between expected mpk and expected stock market returns outlined in Section

4.1. That method did not require us to directly measure the dispersion in β or the price of

risk - both pieces of information were embedded in the observed cross-section of stock returns.

In this section, we provide an alternative strategy to estimating the dispersion in ex-ante risk

exposures, i.e., σ2
β that uses only production-side data and quantify the contribution to mpk

using moments in aggregate risk premia, speci�cally, observed Sharpe Ratios. In one sense, this

strategy is more direct - there is no need to employ �rm-level stock market data to measure

risk exposures. On the other hand, computing β's directly from production-side data has its
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drawbacks - the data are of a lower frequency (quarterly at best) and the time dimension of

the panel is shorter. Further, it would be di�cult to apply this method to �rms in developing

countries (where misallocation is larger), since most �rm-level datasets there have relatively

short panels and are at the annual frequency. For those reasons, we view our results here as an

informative check on our baseline �ndings above.

Our approach is as follows. We can directly measure �rm-level productivity as zit + βixt =

yit − αkit where yit is (the log of) �rm revenues. To compute �rm-level β's, for each �rm

we regress measured productivity growth, i.e., ∆zit + βi∆xt on aggregate productivity growth

∆xt, measured by Fernald's TFP series. It is straightforward to verify that the coe�cient from

this regression is exactly equal to βi. Using these estimates, we calculate the cross-sectional

variance in β's, σ2
β. This procedure gives a value of σβ equal to 25. This is large because

aggregate TFP has relatively small volatility, while measures of �rm TFP can be much more

sensitive to economic downturns (and heterogeneous).

To quantify the contribution to expected mpk dispersion, recall from expression (8) that

σ2
Et[mpk] = σ2

β

(
γtσ

2
ε

)2

In principal, we can use the calibrated values of γ0 and γ1 (along with σ
2
ε) to compute the right

hand side of the expression. However, there turns out to be a more direct way, which does not

requires us to calibrate the γ parameters. Speci�cally, the maximal conditional Sharpe ratio in

the economy, which is equal to the standard deviation of the (log of the) stochastic discount

factor, is given by γtσε.
14 Using this result, we have

σ2
Et[mpk] = σ2

β (SRtσε)
2

where SRt denotes the period t conditional Sharpe ratio. Thus, using our direct estimates of

σ2
β to quantify the implications of risk for expected mpk dispersion simply requires an estimate

of σε, which we have already seen is available from data on aggregate TFP and values of the

maximum Sharpe ratio.

Table 6: Alternate Approach: βs

σ2
E[mpk]

σ2
E[mpk]
σ2
mpk

σ2
E[mpk]
σ2
mpk

SR=0.5 0.04 0.06 0.08
SR=0.7 0.08 0.12 0.16
SR=1.0 0.16 0.24 0.33

14See, e.g., Campbell (2003) for a proof.
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We use the value of σε of 0.016 annually. Standard estimates of the annualized Sharpe

ratio on the market portfolio range from 0.5 (CITE COCHRANE) to 0.6 (MACKINLAY).15

There is good reason to believe these are lower bounds on the maximum achievable Sharpe

ratio. For example, diversi�ed mutual funds can obtain Sharpe ratios in excess of 0.7, and

some asset classes and hedge funds can earn annualized Sharpe ratios in excess of 1. Thus, we

report results for three values - 0.5, 0.7, and 1. Table 6 displays the implied cross-sectional

variance in log(MPK) implied by our risk-adjusted channel, implied by our measured Betai

dispersion and varying Sharpe ratios. With higher numbers for the maximal Sharpe ratio,

this alternative strategy can also account for a signi�cant part of cross-sectional dispersion in

�rm marginal products of capital. For lower values of the Sharpe ratio, the implied amount

of MPK dispersion falls. However, taking the estimated distribution of Betas and the Sharpe

ratio, along with standard parameters, implies very low cross-sectional dispersion in expected

returns as well. Reconciling expected return dispersion with such a model may require multiple

aggregate shocks which a�ect �rms heterogeneously, which would also imply greater MPK

dispersion.

4.4 Numerical Results

In this section, we turn to numerical methods to solve the model and estimate the underlying

distribution of β's. Speci�cally, given the link uncovered in the previous section, we parameter-

ize the dispersion in β's to match the cross-section of expected stock market returns.Further,

we work with the more general case featuring a time-varying price of risk in order to address

the second main prediction of our theory regarding expected MPK dispersion, i.e. its counter-

cyclicality.

Table 7 summarizes our empirical approach. The calibration of the aggregate shock process

is standard in the macro literature and follows Cooley and Prescott (1995). In particular, we

set the quarterly conditional volatility, σε to 0.007 and the persistence, ρx to 0.95, which give

annual analogs of 0.014 and 0.81. The calibration of the stochastic discount factor follows

Zhang (2005) - as in that paper, we set γ0 = 50 and γ1 = −1000. Additionally, we set ρ = 0.99.

These values imply (1) an annualized real interest rate of 2.68% with an annualized volatility

of 2.07% and (2) an average quarterly conditional Sharpe Ratio of 0.38.

We set returns to scale to 0.62 and depreciation to 0.025, which are standard values in the

literature.16 We set the mean volatility and persistence of �rm-level shocks, σε̃ and ρz to 0.05

and 0.9 respectively, in order to generate realistic cross-sectional dispersion in investment rates

and pro�tability, similar to Gomes (2001).

15LO reports even high values after adjusting for serial correlation in returns.
16CITES
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Table 7: Parameterization - Summary

Parameter Description Target/Value
Aggregate shocks/SDF

σε Std. dev. of agg. shock 0.007
ρx Persistence of agg. shock 0.95
γ0 SDF - constant component 50
γ1 SDF - time-varying component -1000

Preferences/production
ρ Discount rate 0.99
θ Returns to scale 0.62
σε̃ Std. dev. of idiosyncratic shock 0.05
ρz Persistence of idiosyncratic shock 0.9
σβ Std. dev of risk exposures

Finally, and critically, we need to pin down the ex-ante dispersion in �rms' exposure to

systematic risk, σ2
β. We estimate this dispersion so as to generate the average empirical ex-

post dispersion of expected stock returns within an industry. We choose the within-industry

dispersion as our target as other than risk exposures, our model does not feature any industry-

speci�c elements. This value is, to some extent, dependent on the asset pricing model chosen and

the precise form of the calculation. For example, adopting the Fama-French three-factor model

as our benchmark results in a cross-sectional variance of expected stock returns of between

0.0014 and 0.023, depending on the interpretation of �rm-speci�c α's (e.g., whether we include

variation in α's as capturing unmeasured exposures to aggregate risks, or we exclude them as

simply noise). In our benchmark simulations reported below, we choose a dispersion of 0.01, so

roughly the midpoint, and provide sensitivity with respect to these choice.

We solve the model via value function iteration and estimate the dispersion in �rm-level β's

via a simulated method of moments approach, i.e., we choose σ2
β so that the ex-post dispersion

in expected stock returns from a simulated panel of �rms matches the value from the data.

Results Our objective is to gauge the amount of MPK dispersion that a frictionless dynamic

investment model with ex-ante heterogeneity in risk exposure can generate, once calibrated to

salient asset market data. Also, we explore the dynamics of the cross-sectional dispersion in

MPK over the business cycle, when we allow for realistically countercyclical movements in risk

prices. We do so by examining the statistical properties of simulated panels of �rms, from our

benchmark calibration as well as relevant variations.

Our �rst set of results are in table 8. A �rst account of the results is as follows. For various

parameter choices for the basic risk price parameters γ0 and γ1, we compute the cross-sectional

standard deviation of within industry MPK, our main measure of variation in the marginal
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Table 8: MPK and Risk

Model (i) (ii) (iii) (iv) (v) (vi)

A. Parameters

γ0 40 50 60 40 50 60
γ1 -1000 -1000 -1000 0 0 0

B. Moments

Average Sharpe Ratio 0.29 0.38 0.44 0.28 0.37 0.44
σ2
E[mpk] 0.22 0.36 0.47 0.24 0.28 0.48

Corr(σE[mpk], yt) -0.16 -0.22 -0.27 -0.06 0.03 0.02

This table reports average moments of simulated panels across various model speci�cations. We focus on varying

the parameters underlying the stochastic discount factor, γ0 and γ1 to assess the e�ects of risk premia on the

levels and dynamics of average mpk. To compute σE[mpk], we compute average mpk per �rm, and determine its

cross-sectional standard deviation.

product of capital. Our baseline case considered above, with γ0 = 50 and γ1 = −1000, gives a

model analog of about 0.36. To gauge the magnitude of these results, we have computed the

total amount of misallocation, i.e., σ2
mpk in our data. The overall level of dispersion is equal to

0.67. Because our theory primarily speaks to persistent deviations from mpk equalization at

the �rm-level, we have also separated the mpk of each �rm into a transitory and permanent

component and computed the cross-sectional variance of the latter - this gives a value of 0.48.

Putting these together, the results imply that ex-ante heterogeneity in risk exposures account

for about 54% of overall mpk dispersion among Compustat �rms and about three-quarters of

dispersion in the permanent component of mpk.

Naturally, the amount of mpk dispersion is sensitive to the implied Sharpe ratios implicit

in the stochastic discount factor (i.e., the degree of aggregate risk). There is some debate in

the literature as to what Sharpe ratios can be obtained in �nancial markets, with value-growth

portfolios reaching Sharpe ratios of closer to 0.8, and alternative investment strategies involving

hedge fund and private equity exposure reporting Sharpe ratios above one, but likely subject

to substantial measurement error. The baseline calibration of the stochastic discount factor

matches well the Sharpe ratio on the market portfolio, but likely only gives a lower bound to

Sharpe ratio attainable in �nancial markets by means of alternative investment strategies. We

can trace out the implications of various indications of attainable Sharpe ratios in �nancial

markets for MPK dispersion by suitable re-calibrations of the stochastic discount factor. The
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table shows that varying Sharpe ratios in a relatively con�ned range results in some variation

in the implied mpk dispersion, although reasonable values of the Sharpe Ratio all suggest

signi�cant e�ects.

The table also shows that MPK dispersion displays signi�cant variation over the business

cycle provided the market price of risk is countercyclical, that is, when γ1 < 0. In particular,

the dispersion becomes notably countercyclical, in line with the empirical results in Eisfeldt

and Rampini (2006). In the light of our beta pricing equation, (5), it is not surprising that

countercyclical MPK dispersion obtains even in a completely frictionless model. The table

con�rms that these e�ects are empirically relevant.

5 Conclusion

In this paper, we have revisited the notion of `misallocation' from the perspective of a risk-

sensitive, or risk-adjusted, version of the stochastic growth model. The standard �rst order

condition for investment in that framework suggests that expected �rm-level marginal prod-

ucts should re�ect exposure to factor risks, and their pricing. To the extent that �rms are

di�erentially exposed to these risks, as the literature on cross-sectional asset pricing suggests,

the implication is that cross-sectional dispersion in mpk may not only re�ect true misallocation,

but also risk-adjusted capital allocation.

We empirically evaluate this proposition, and �nd strong support for it. Indeed, from

an asset pricing perspective, we show that a long short portfolio of high minus low MPK

stocks earns a signi�cant premium, so that high MPK �rms are e�ectively riskier, and that this

premium is predictable and countercyclical, so that their cost of capital rises disproportionately

in bad times. A calibrated dynamic model suggests that, indeed, risk-adjusted capital allocation

accounts for a substantial fraction of observed mpk dispersion.
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Appendix

A Derivations and Proofs

This appendix provides detailed derivations for the expressions in the text.

A.1 Motivation

Derivation of equation (2).

1 = Et [Mt+1 (MPKit+1 + 1− δ)]

= Et [Mt+1]Et [MPKit+1 + 1− δ] + cov (Mt+1,MPKit+1)

= Et [Mt+1] (MPKft+1 + 1− δ)

⇒ Et [MPKt+1] = MPKft+1 −
cov (Mt+1,MPKt+1)

Et [Mt+1]

= αt + βitλt

where αt, βit and λt are as de�ned in the text, and MPKft+1 is the MPK of the `risk-free'

�rm de�ned by cov (Mt+1,MPKft+1) = 0. By a no-arbitrage condition, it must be the case

that 1
Et[Mt+1]

= MPKft+1 + 1− δ = Rft where Rft is the gross risk-free interest rate.

No aggregate risk. With no aggregate risk,Mt+1 = ρ ∀ t where ρ is the rate of time discount.
The Euler equation gives

1 = ρ (Et [MPKit+1] + 1− δ) ∀ i, t ⇒ Et [MPKit+1] =
1

ρ
− (1− δ) = rf + δ

CAPM. Clearly, −cov (Mt+1,MPKit+1) = bcov (Rmt+1,MPKit+1) and var (Mt+1) = b2var (Rmt+1).

Since the market return is an asset, it must satisfy Et [Rmt+1] = Rft + λt
b

so that λt =

b (Et [Rmt+1]−Rft). Substituting into expression (2) gives the CAPM expression in the text.

CCAPM. A log-linear approximation to the SDF around its unconditional mean givesMt+1 ≈
E [Mt+1] (1 +mt+1 − E [mt+1]) and in the case of CRRA utility, mt+1 = −γ∆ct+1 where ∆ct+1

is log consumption growth. Substituting for Mt+1 into expression (2) gives the CCAPM ex-

pression in the text.
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A.2 MPK Dispersion

The Euler equation gives

1 = Et
[
Mt+1

(
θezit+1+βixt+1Kθ−1

it+1 + 1− δ
)]

= (1− δ)Et [Mt+1] + θKθ−1
it+1Et

[
emt+1+zit+1+βixt+1

]
Substituting for mt+1 and rearranging,

Et
[
emt+1+zit+1+βixt+1

]
= Et

[
elog ρ+zit+1+(βi−γ0−γ1xt)xt+1+(γ0+γ1xt)xt

]
= Et

[
elog ρ+ρzzit+εit+1+(βi−γ0−γ1xt)(ρxxt+εt+1)+(γ0+γ1xt)xt

]
= Et

[
elog ρ+ρzzit+εit+1+((βi−γ0−γ1xt)ρx+γ0+γ1xt)xt+(βi−γ0−γ1xt)εt+1

]
= elog ρ+ρzzit+((βi−γ0−γ1xt)ρx+γ0+γ1xt)xt+

1
2

(βi−γ0−γ1xt)2σ2
ε+ 1

2(σ2
ε̃−β

2
i σ

2
ε)

= elog ρ+ρzzit+((βi−γ0−γ1xt)ρx+γ0+γ1xt)xt−βi(γ0+γ1xt)σ2
ε+γ1xt(γ0+ 1

2
γ1xt)σ2

ε+ 1
2
γ20σ

2
ε+ 1

2
σ2
ε̃

so that

θKθ−1
it+1 =

1− (1− δ)Et [Mt+1]

elog ρ+ρzzit+((βi−γ0−γ1xt)ρx+γ0+γ1xt)xt−βi(γ0+γ1xt)σ2
ε+γ1xt(γ0+ 1

2
γ1xt)σ2

ε+ 1
2
γ20σ

2
ε+ 1

2
σ2
ε̃

and in logs,

kit+1 =
1

1− θ
[
α̃t + ρzzit + βiρxxt − βi (γ0 + γ1xt)σ

2
ε

]
=

1

1− θ
[
α̃t + ρzzit + βiρxxt − βiγtσ2

ε

]
where

α̃t = log θ − log (1− (1− δ)Et [Mt+1]) + log ρ− ((γ0 + γ1xt) ρx − γ0 − γ1xt)xt

+ γ1xt

(
γ0 +

1

2
γ1xt

)
σ2
ε +

1

2
γ2

0σ
2
ε +

1

2
σ2
ε̃

= log θ − log (1− (1− δ)Et [Mt+1]) + log ρ+ γt (1− ρx)xt +
1

2
γ2
t σ

2
ε +

1

2
σ2
ε̃
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is a time-varying term that is constant across �rms. Next,

mpkit+1 = log θ + πit+1 − kit+1

= log θ + zit+1 + βixt+1 − (1− θ) kit+1

= log θ + zit+1 + βixt+1 − α̃t − ρzzit − βiρxxt + βiγtσ
2
ε

= αt + εit+1 + βiεt+1 + βiγtσ
2
ε

where αt = log θ − α̃t. The time-t conditional expected mpk is

Et [mpkit+1] = αt + βiγtσ
2
ε

A.3 Stock Market Returns

We consider a log-linear approximation around the non-stochastic steady state, where zit =

xt = 1 and so Mt = ρ. In the steady state, we have

MPK =
1

ρ
+ δ − 1 ⇒ K =

[
1

θ

(
1

ρ
+ δ − 1

)] 1
θ−1

Π = Kθ ⇒ D = Kθ − δK

P =
ρ

1− ρ
D

R = 1 +
D

P
⇒ rf = − log ρ

where P denotes the (ex-dividend) stock price and R and rf the gross and net interest rates,

respectively.

The �rm's dividend is given by

Dit+1 = Πit+1 −Kit+2 + (1− δ)Kit+1

and log-linearizing,

d̂it+1 =
Π

D
(ẑit+1 + βix̂t+1) +

[
θ

Π

D
+ (1− δ)K

D

]
k̂it+1 −

K

D
k̂it+2
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Adding back in the steady state values to convert into levels,

dit+1 = logD +
Π

D
(zit+1 + βixt+1) +

[
θ

Π

D
+ (1− δ)K

D

]
(kit+1 − logK)− K

D
(kit+2 − logK)

=
Π

D
(zit+1 + βixt+1) +

[
θ

Π

D
+ (1− δ)K

D

]
kit+1 −

K

D
kit+2 + logD −

(
θ

Π

D
− δK

D

)
logK

From above, we have

kit+1 =
1

1− θ
[log θ − Φt + ρzzit + βiρxxt − βiγ0σ

2
ε ]

where

Φt = log(1− (1− δ)e−rft) + rft −
1

2
σ2
ε̃

(since rft = − logEt [expmt+1] = − log ρ− γ0 (1− ρx)xt − 1
2
γ2

0σ
2
ε). Log-linearizing gives

Φt ≈
[
log(1− (1− δ)e−rf )− 1

2
σ2
ε̃ −

(1− δ)e−rf
1− (1− δ)e−rf

rf

]
+

1

1− (1− δ)e−rf
rft

=

[
log(1− (1− δ)e−rf )− 1

2
σ2
ε̃ −

(1− δ)e−rf
1− (1− δ)e−rf

rf

]
−

log ρ+ 1
2
γ2

0σ
2
ε

1− (1− δ)e−rf
− γ0(1− ρx)

1− (1− δ)e−rf
xt

De�ning the constant:

Φ =

[
log(1− (1− δ)e−rf )− 1

2
σ2
ε̃ −

(1− δ)e−rf
1− (1− δ)e−rf

rf

]
−

log ρ+ 1
2
γ2

0σ
2
e

1− (1− δ)e−rf

Φt can be written as

Φt = Φ− γ0(1− ρx)
1− (1− δ)e−rf

xt

Using this, along with the equation for kit+1, we can write

dit+1 =

[
Π

D
+

1

1− θ

(
θ

Π

D
+ (1− δ)K

D

)
− 1

1− θ
K

D
ρz

]
ρzzit

+

[
Π

D
+

1

1− θ

(
θ

Π

D
+ (1− δ)K

D

)
− 1

1− θ
K

D
ρx

]
βiρxxt

+

[
Π

D
− K

D
ρz

1

1− θ

]
εit+1 +

[
Π

D
− K

D
ρx

1

1− θ

]
βiεt+1

+

[
Π

D
− δK

D

]
1

1− θ
(
log θ − βiγ0σ

2
ε

)
+

[
K

D
Φt+1 −

(
θ

Π

D
+ (1− δ)K

D

)
Φt

]
1

1− θ

+ logD −
(
θ

Π

D
− δK

D

)
logK
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and since[
K

D
Φt+1 −

(
θ

Π

D
+ (1− δ)K

D

)
Φt

]
1

1− θ
= − Φ

1− θ

(
θ

Π

D
− δK

D

)
+

1

1− θ
γ0(1− ρx)

1− (1− δ)e−rf

(
θ

Π

D
+ (1− δ)K

D
− ρx

K

D

)
xt

− 1

1− θ
γ0(1− ρx)

1− (1− δ)e−rf
K

D
εt+1

we can write

dit+1 = (Ã1 + A2)ρzzit + [(A1 + A2)βiρx + A4]xt + Ã1εit+1 + (βiA1 − A3)εt+1 + A0

where

A0 =
1

1− θ

(
α

Π

D
− δK

D

)[
log θ − βiγ0σ

2
ε − Φ

]
+ logD −

(
θ

Π

D
− δK

D

)
logK

A1 =
Π

D
− K

D

ρx
1− θ

Ã1 =
Π

D
− K

D

ρz
1− θ

A2 =
1

1− θ

[
θ

Π

D
+ (1− δ)K

D

]
A3 =

1

1− θ
K

D

γ0(1− ρx)
1− (1− δ)e−rf

A4 =
1

1− θ

(
θ

Π

D
+ (1− δ)K

D
− ρx

K

D

)
γ0(1− ρx)

1− (1− δ)e−rf

A5 =
1

1− θ
1

ρx

γ0(1− ρx)
1− (1− δ)e−rf

(
θ

Π

D
+ (1− δ)K

D

)
with A4 = ρx(A5 − A3).

Next, log-linearizing the return equation Rit+1 = Dit+1+Pit+1

Pit
gives

rit+1 =
1

R
pit+1 − pit +

R− 1

R
dit+1 +

R− 1

R
log

P

D
+ logR
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Conjecture that pit is linear in the states, i.e., pit = c0 + c1βiεt + c2εit + c3βixt + c4zit. Then,

rit+1 =

(
1− 1

R

)
(A0 − c0) +

R− 1

R
log

P

D
+ logR

+

[
βi
R

(c1 + c3) +
R− 1

R
(βiA1 − A3)

]
εt+1 +

[
c2 + c4

R
+
R− 1

R
Ã1

]
εit+1

+

[(ρx
R
− 1
)
c3βi +

R− 1

R
[(A1 + A2)βiρx + A4]

]
xt +

[(ρz
R
− 1
)
c4 +

R− 1

R
(Ã1 + A2)ρz

]
zit

− c1βiεt − c2εit

The Euler equation requires

logEt(erit+1+mt+1) = 0

so that

0 =

(
1− 1

R

)
(A0 − c0) +

1

2

[
βi
R

(c1 + c3) +
R− 1

R
(βiA1 − A3)− γ0

]2

σ2
e

+
1

2

[
c2 + c4

R
+
R− 1

R
Ã1

]2

(σ2
ε̃ − β2

i σ
2
ε)

+

[(ρx
R
− 1
)
c3βi +

R− 1

R
[(A1 + A2)βiρx + A4] + γ0(1− ρx)

]
xt

+

[(ρz
R
− 1
)
c4 +

R− 1

R
(Ã1 + A2)ρz

]
zit

− c1βiεt − c2εit + log ρ+
R− 1

R
log

P

D
+ logR

This must hold for all εit, εt, zit and xt. Hence, the coe�cients satisfy:

c1 = 0

c2 = 0

c3βi

(ρx
R
− 1
)

= −R− 1

R
[(A1 + A2)βiρx + A4]− γ0(1− ρx)

c4

(ρx
R
− 1
)

= −R− 1

R
(Ã1 + A2)ρz(

1− 1

R

)
(A0 − c0) = −1

2

[
βi
R

(c1 + c3) +
R− 1

R
(βiA1 − A3)− γ0

]2

σ2
ε

− 1

2

[
c2 + c4

R
+
R− 1

R
Ã1

]2

(σ2
ε̃ − β2

i σ
2
ε)− log ρ
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and

rit+1 =

(
1− 1

R

)
(A0−c0)+

[
βic3

R
+
R− 1

R
(βiA1 − A3)

]
εt+1+

[
c4

R
+
R− 1

R
Ã1

]
εit+1−γ0(1−ρx)xt

Then,

Et[rit+1] = rft + γ0

[
βic3

R
+
R− 1

R
(βiA1 − A3)

]
σ2
ε −

1

2
V art[rit+1]

V art[rit+1] =

[
βic3

R
+
R− 1

R
(βiA1 − A3)

]2

σ2
ε +

[
c4

R
+
R− 1

R
Ã1

]2

(σ2
ε̃ − β2

i σ
2
ε)

Et[Rit+1] = erft+γ0[
βic3
R

+R−1
R

(βiA1−A3)]σ2
ε

= e
rft+γ

[
−R−1

R
A3− (1−ρx)γ0

ρx−R
−R−1

R
1

ρx−R
A4

]
+(R−1

R )[A1+ ρx
R−ϕ (A1+A2)]γ0βiσ2

ε

= e
rft+

1
ψ0

+ 1
ψ1
γ0σ2

εβi

where 1
ψ0

= −γ0

[
R−1
R
A3 + (1−ρx)γ0

ρx−R + R−1
R

1
ρx−RA4

]
σ2
ε and

1
ψ1

=
(
R−1
R

) [
R

R−ρxA1 + ρx
R−ρxA2

]
.

Then,

logEt [Rit+1] = rft +
1

ψ0

+
1

ψ1

γ0βiσ
2
ε

and the expected excess return (relative to the �rm with no risk, i.e., β of zero) is

Et
[
reit+1

]
≡ logEt

[
Re
it+1

]
=

1

ψ1

γ0βiσ
2
ε

with cross-sectional variance

σ2
Et[r] =

(
1

ψ1

)2

σ2
β

(
γ0σ

2
ε

)2

Properties of the multiplier. The multiplier that translated expected stock return disper-

sion into expected mpk dispersion is given by

ψ1 =

(
R

R− 1

)[
R

R− ρx
A1 +

ρx
R− ρx

A2

]−1

(16)

Plugging in the de�nitions of objects yields this as a function of only four parameters,

(ρ, ρx, θ, δ):

ψ1 =

(
1− ρρx
1− ρ

) 1
ρ

+ (1− θ) δ − 1
1
ρ

+ δ − 1
(17)
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The derivatives of the multiplier with respect to these parameters can be derived as:

∂ψ1

∂ρx
= − ρ

1− ρ

1
ρ

+ (1− θ) δ − 1
1
ρ

+ δ − 1
= −1− ρρx

ρ
ψ1 < 0

∂ψ1

∂δ
=

(
1− ρρx
1− ρ

) −θ (1
ρ
− 1
)

(
1
ρ

+ δ − 1
)2 = −ψ1

θ
(

1
ρ
− 1
)

(
1
ρ

+ δ − 1
)(

1
ρ

+ (1− θ) δ − 1
) < 0

∂ψ1

∂θ
=

(
1− ρρx
1− ρ

)
−δ

1
ρ

+ δ − 1
= −ψ1

δ
1
ρ

+ (1− θ) δ − 1
≤ 0

∂ψ1

∂ρ
=

(δ2 (1− θ)) (1− ρx) + 1−ρ
ρ2

((1− ρ) (1− δ) + (1 + ρ) δ (1− θ) + δθρρx)(
(1− ρ)

(
1
ρ

+ δ − 1
))2 > 0

Given our assumptions about the domain of parameters (ρ, θ ∈ (0, 1), δ, ρx ∈ [0, 1]), we

know that ∂ψ1

∂ρx
, ∂ψ1

∂δ
, ∂ψ1

∂θ
are all negative and ∂ψ1

∂ρ
is positive.17 Since ψ1 is continuous in these

parameters on this domain, we can conclude ψ1 is increasing in ρ and decreasing in ρx, δ, θ.

A.4 Other Distortions

With distortions, the �rm's value function becomes

V (Xt, Zit, Kit, ξit+1) = max
Kit+1

ezit+βixt+τitKθ
it−Kit+1+(1− δ)Kit+Et [Mt+1V (Xt+1, Zit+1, Kit+1, ξit+1)]

and the Euler equation

1 = (1− δ)Et [Mt+1] + αKα−1
it+1Et

[
emt+1+zit+1+βixt+1+τit+1

]
Substituting the form of the distortion from (14) and following similar steps as the baseline

case,

Et
[
emt+1+zit+1+βixt+1+τit+1

]
= Et

[
emt+1+zit+1+βixt+1+ν(zit+1+βixt+1)−ξit+1

]
= Et

[
elog ρ+(1+ν)ρzzit+((βi(1+ν)−γ0)ρx+γ0)xt+((1+ν)βi−γ0)εt+1+(1+ν)εit+1−ξit+1

]
= elog ρ+(1+ν)ρzzit+((βi(1+ν)−γ0)ρx+γ0)xt+

1
2

((1+ν)βi−γ0)2σ2
ε+ 1

2
(1+ν)2(σ2

ε̃−β
2
i σ

2
ε)−ξit+1

= elog ρ+(1+ν)ρzzit+((βi(1+ν)−γ0)ρx+γ0)xt−(1+ν)γ0βiσ
2
ε+ 1

2
γ20σ

2
ε+ 1

2
(1+ν)2σ2

ε̃−ξit+1

17 ∂ψ1

∂θ < 0 if δ ∈ (0, 1), ∂ψ1

∂θ ≤ 0 if δ ∈ [0, 1)
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so that

θKθ−1
it+1 =

1− (1− δ)Et [Mt+1]

elog ρ+(1+ν)ρzzit+((βi(1+ν)−γ0)ρx+γ0)xt−(1+ν)γ0βiσ2
ε+ 1

2
γ20σ

2
ε+ 1

2
(1+ν)2σ2

ε̃−ξit+1

and in logs,

kit+1 =
1

1− θ
[
α̃t + (1 + ν) ρzzit + (1 + ν) βiρxxt − (1 + ν) βiγ0σ

2
ε − ξit+1

]

where

α̃t = log θ − log (1− (1− δ)Et [Mit+1]) + log ρ+ (1− ρx) γ0xt +
1

2
γ2

0σ
2
ε +

1

2
(1 + ν)2 σ2

ε̃

Then,

mpkit+1 = log θ + yit+1 − kit+1

= log θ + zit+1 + βixt+1 − (1− θ) kit+1

= log θ + zit+1 + βixt+1 − α̃t − (1 + ν) ρzzit − (1 + ν) βiρxxt + (1 + ν) βiγ0σ
2
ε + ξit+1

= αt + εit+1 + βiεt+1 − νρzzit − νβiρxxit + (1 + ν) βiγ0σ
2
ε + ξit+1

where αt = log θ − α̃t.
Expected mpk is

Et [mpkit+1] = αt − νρzzit − νβiρxxit + (1 + ν) βiγ0σ
2
ε + ξit+1

and the cross-sectional variance

σ2
Et[mpk] = ν2ρ2

zσ
2
z + ν2ρ2

xx
2
tσ

2
β + (1 + ν)2 σ2

β

(
γ0σ

2
ε

)2
+ σ2

ξ

B Empirical Predictions

Computation of Betas and Expected Returns We compute stock market betas for equity

returns by running time series regressions of excess equity returns on factor portfolio returns

for each �rm. We compute stock market betas using monthly returns and a two-year rolling

window horizon. We also compute �MPK Betas� as an alternative measure of �rm exposure to

the aggregate shock, regressing �rm log(Y/K) on factor portfolio returns. As �rm log(Y/K)

is only observed at the quarterly frequency, we use quarterly returns and a �ve-year rolling
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window horizon.

To compute expected returns, we �rst run Fama-Macbeth regressions to estimate market

prices of risk for each factor. We then compute two measures of expected returns. We then

compute Et[ri,t()] =
∑

j βi,jλj + ε̄i, where j denotes the factor, i the �rm, λj is the market price

of risk for factor j, and ε̄i is the average residual for �rm i in the Fama-Macbeth regressions.

We then compute Et[ri,t(β)] =
∑

j βi,jλj, a measure of expected returns coming just from the

factors and the market prices of risk (and not mis-pricing). The results reported in the body of

the text consider the Fama-French model, but we have replicated qualitatively similar results

using a number of other factor models.

Supplemental Tables Table 9 displays a cross-sectional regression of the standard deviation

of mpk (within each industry) on the standard deviation of betas and expected returns (within

each industry).

Table 9: Cross-sectional Industry Regression of mpk Dispersion

(1) (2) (3) (4)
σ(LMPK) σ(LMPK) σ(LMPK) σ(LMPK)

σ(EFF [ret]) 2.994∗∗∗

(11.38)
σ(EFF,β[ret]) 16.64∗∗∗

(11.26)
σ(βMKT ) 0.263∗∗∗

(2.68)
σ(βHML) 0.170∗∗∗

(3.11)
σ(βSMB) 0.217∗∗∗

(3.41)
σ(βMKT,MPK) 0.252∗∗∗

(4.41)
σ(βHML,MPK) -0.0157

(-0.39)
σ(βSMB,MPK) 0.145∗∗∗

(5.84)
Constant 0.377∗∗∗ 0.198∗∗∗ 0.0500 0.251∗∗∗

(9.26) (3.55) (0.79) (4.62)
Observations 206 206 206 113
R2 0.388 0.383 0.450 0.521

Notes: Et [rt] is the expected return computed from a Fama-Macbeth regression.
Et [rt (β)] is the expected return predicted from the β's of that regression alone. β'
denotes the stock return β on the FF factors and βMPK the mpk β on the same
factors. t-statistics are in parentheses. Signi�cance levels are denoted by: * p <
0.10, ** p < 0.05, *** p < 0.01
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Table 10: Panel Industry Regression of mpk Dispersion, Year FE

(1) (2) (3) (4)

σ(E[ret]) 2.244∗∗∗

(27.35)
σ(Eβ[ret]) 12.66∗∗∗

(27.69)
σ(βMKT ) 0.267∗∗∗

(10.36)
σ(βHML) 0.107∗∗∗

(7.33)
σ(βSMB) 0.129∗∗∗

(7.85)
σ(βCAPM,MPK) 0.138∗∗∗

(6.32)
σ(βHML,MPK) 0.0961∗∗∗

(6.16)
σ(βSMB,MPK) 0.0703∗∗∗

(6.33)
Observations 2721 2746 2734 1427
R2 0.219 0.221 0.275 0.291

Notes: Et [rt] is the expected return computed from a Fama-Macbeth regression.
Et [rt (β)] is the expected return predicted from the β's of that regression alone. β'
denotes the stock return β on the FF factors and βMPK the mpk β on the same fac-
tors. t-statistics are in parentheses. Signi�cance levels are denoted by: * p < 0.10,
** p < 0.05, *** p < 0.01
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