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Abstract— The ability to allow subjects, including paralyzed
patients, to perform a task using brain-computer interfaces has
seen a rapid and growing success. Surprisingly, however, it is
still not known how far such performance can be improved
- especially in cases of long term amputation where both
efferent and afferent functions are abolished and may lead
to deterioration of the relevant brain representations. Here
we used real-time fMRI to demonstrate a remarkably high
performance of long term amputees in controlling a computer
generated avatar using their missing hand. The missing limb
BCI performance showed similar levels both when compared
to the intact hand and to control participants.

I. INTRODUCTION

Advances in brain research have opened a number of

promising opportunities to bypass motor deficits through

brain-computer interfaces, including studies with disabled

patients. Experimental demonstration of the feasibility of

this approach has been documented in various modalities

from non-invasive scalp recordings (e.g., [1]) to invasive

multi-neuronal recordings following implantation (e.g., [2]).

However, despite the rapid expansion of this field, it is

unclear what the ultimate limits to BCI performance are.

This issue should be divided into two independent aspects:

the first is technical, and has to do with our ability to

record neuronal signals at sufficient speed and detail to allow

precise motor performance. The second question is biological

and concerns the possibility that even if techniques for

detailed recordings may be developed - the long term motor

dysfunction may lead to deteriorated brain representations

so that the information required for BCI will no longer be

available. This is particularly problematic in the case of long

term amputations, since in these cases not only the ability to

move the missing limb is lost, but also all somato-sensory

and proprioceptive inputs are abolished as well. Obviously,

if such long term deterioration is the case, then the potential

for successful BCI strategies, at least the ones that rely on

direct recordings of motor commands, will be substantially

limited, regardless of technical advances.

Here we addressed this question by allowing long term

amputees to perform BCI study using real-time fMRI. The
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advantage of fMRI in this respect is that it provides a highly

detailed anatomical mapping of the brain activity, which

allows us a quantitative comparison of the brain areas respon-

sible for healthy and amputated limb control. Furthermore,

we have previously demonstrated that the fMRI, despite its

dependence on sluggish hemodynamic signals is capable

of delivering BCI control and allows subjects to perform

complex navigation tasks [3]. Besides offering great promise

to future BCI developments, our results open interesting new

possibilities for rehabilitation using real time fMRI.

II. MATERIALS

Imaging was performed on a 3T Trio Magnetom Siemens

scanner as described in [3], [4], with a repetition time (TR) of

2000ms. We used our system based on whole brain machine

learning [5] for training and real-time classification. Visual

feedback was provided by a mirror, placed 11cm from the

eyes of the subject and 97.5cm from a screen, which resulted

in a total distance of 108.5cm from the screen to the eyes of

the subject.

Seven subjects took part: four control (2 male, mean age

28.5) and three amputees, all male (mean age 31.3), as

follows: BZ is 40 years old, amputation above the elbow,

2 years after the accident. PW is 26 years old, amputation

below the shoulder, 1.5 years after the accident. BH is 28

years old, amputation below the shoulder, 2 years after the

accident. All subjects reported suffering from mild to high

levels of phantom pain.

In order to verify that the amputee subjects are not using

their stump we connected EMG electrodes to the subjects’

muscle area surrounding the stump. Subjects were instructed

to move the fingers in the amputated arm and data (bandpass

1-5000 Hz; sampling rate 10000 Hz) obtained from the

shoulder area was collected to validate that no muscle activity

was involved in motor movement of the amputated arm. A

comb band stop filter was used with a fixed value of 16Hz

to remove repetitive noise that came from scanning 32 slices

every 2000ms.

III. METHODS

A. Real-time Cue-Based BCI

In this experiment, the subject sees an avatar standing in

the center of a room. In each trial the subject is given 40

pseudo-random auditory instructions (“left”, “right”, “for-

ward”, and “rest”); 10 from each class. Six seconds after

each action, the subject is instructed to rest and during

that time the avatar executes the pre-determined command

that corresponds with the instruction (turning left or right,



walking forward, and stopping). The rest duration varies

between 8 and 10 seconds. The classifier was trained once

on three runs for each subject and the same model was used

in every subsequent trial, over multiple days.

Fig. 1. The 3D virtual path scenario. The subject’s avatar is seen standing
at the beginning of the path.

B. Real-Time Free-Choice BCI

The same subjects participated in the a free-choice navi-

gation task. Each subject was instructed to guide the avatar

toward the end of the path by picking up as many discs as

possible (Fig. 1). The classification result was then transmit-

ted to the Unity 3D engine for virtual environment feedback.

To successfully collect a disc the avatar must touch it and

then the disc changes to green. Each trial lasted 696 seconds.

The system provided feedback to the subject following each

scan (in our case every 2 seconds), and between these updates

the avatar kept performing the last instruction.

IV. RESULTS

A. Real-time Cue-Based BCI

Fig. 2. Average classification accuracy in each TR for both groups.
Accuracy was calculated from 4 available classes. The Y-axis represents
the average classification accuracy and the X-axis represents the TR. Error
bars indicate the 95% confidence interval.

Fig. 2 provides average classification results of the training

and cue-based BCI sessions and indicates that the optimal ac-

curacy, for 4 classes (left, right, forward, rest), is consistently

achieved 6 seconds after a cue (due to the hemodynamic

delay, and consistent with our previous findings [3]). The

amputee group performance was similar to the control group.

A mixed effects for repeated measure statistical analysis tak-

ing into account subject, condition, and accuracy, indicated

that the difference between the groups at TR3 (amputees =

91.6%, control = 95%) was not significant (p = 0.45) and at

TR4 (amputees = 91.6%, control = 97.5%) the difference is

nearly significant (p = 0.068).

Fig. 3. Average classification accuracy in each TR for amputated- and intact
hands. The Y-axis represents the average classification accuracy and the X-
axis represents the TR. Error bars indicate the 95% confidence interval.

Fig. 3 compares the average classification accuracy of the

intact hand with the missing hand. Taking into account the

TR with maximum classification yields 93.3% and 90%,

respectively, based on 3 subjects.

Fig. 4. The normalized amount of experiments in which the average time to
pick up a single disc lies in each 12 second interval from 60 seconds upward,
for both groups. The Y-axis represents the normalized frequency and the X-
axis represents each increment. Controls participated in 1-2 additional runs
and therefore picked up more discs than amputees, thus the frequency was
normalized by the total amount of discs collected by each group. Error bars
indicate the 95% confidence interval.

B. Real-Time Free-Choice BCI

In each trial i, performance was calculated by dividing the

trial time ti by the amount of collected discs di. Thus giving

us the average time to collect a single disc in seconds (a

lower result describes better performance); i.e.,pi =
ti

di

.



The optimal time for collecting a disc was determined in

a pilot study using a joystick, and was 35 seconds per target.

The task was repeated several times until it was completed

without any mistakes and without using the ‘rest’ class to

stop the avatar. The best time achieved by an amputated

subject is 69.3 seconds and the best time by a subject who

had both hands is 57.75 seconds, i.e., an overhead of 98%

and 65%, respectively, beyond joystick performance. The

average time included “rest” conditions that were part of

the subjects’ strategy, mostly when switching between com-

mands; normalized results are displayed in Fig. 4. A mixed

effects for repeated measures statistical analysis taking into

account subject, condition, and performance indicated that

the control group performed slightly better, but the difference

was not significant (p=0.158). A significant difference was

found among the subjects (p = 0.024).

Fig. 5. Class usage percentage for the amputated group for each command
out of 100%. The Y-axis represents the percentage usage and the X-axis
represents the 4 commands. Error bars indicate the 95% confidence interval.

Fig. 5 shows average usage for each command in free-

choice trials, indicating similar usage patterns in both groups;

i.e., there was no bias for using the intact hand more than the

missing hand in the amputees. As expected “forward” had

more usage due to the nature of the path, which had longer

distances between discs. The “rest” command was typically

used when subjects switched between two commands.

Fig. 6 shows the best trajectories performed by 3 amputees

and 3 control subjects. The speed is determined by the

number of rest (null class) selections, and we see that both

groups followed the same pattern, slowing down before turns.

V. BRAIN ANALYSIS

Fig. 7 shows a visual gallery of left vs right brain contrast

overlayed on a flat brain using uncorrected p<0.05 in the

cue-based task, and Fig. 8 presents the same data for the

free-choice task. For subject ’PW’ the inflated brain is a

mapping of the flat brain immediately below it. The red

arrows represent the dominant hand and intact hand for

the control and amputees groups, respectively. Both subject

populations were able to adopt a strategy that evoked motor-

related brain regions, although this was not required by our

Fig. 6. A visualization of the paths of the best performance of six subjects.
Left column: controls, right column: amputees. Colors reflect speed.

Fig. 7. A gallery visualization of the left vs right contrast using a p<0.05
for the cue-based task, for all subjects from the amputees and the control
group.



whole-brain machine learning system. In other words, the

system was able to select the most relevant patterns for the

task, converging on motor areas, for all subjects, without

prior assumptions or information about those brain regions.

In both tasks the patterns indicated by the arrows show that

the motor activation of the dominant hand is stronger than

the non-dominant hand in all subjects. In certain amputees

the motor activations expand beyond the motoric area, and

as expected the activations of the amputated hand is weaker

than the intact hand. The mean beta values for the amputated

hand are within the confidence interval of the intact hand;

although slightly lower they are still higher than the mean

beta values of the two other conditions in the same ROI,

which allows for a good classification.

Fig. 8. A gallery visualization of the left vs right contrast using a p<0.05
for the free choice task, for all subjects from the amputees and the control
group.

VI. DISCUSSION

In this study we show that amputees can perform a

BCI with their missing limb with very high accuracy, and

that their BCI performance is comparable to that of able

bodied subjects. We also demonstrate the utility of real-time

fMRI for BCI: fMRI offers advantages of anatomical detail

and brain coverage that are not matched by any other real

time method currently available, including invasive methods.

Thus we suggest the fMRI-based BCI can make a great

contribution to BCI development, as well as to individual

training and adaptation. fMRI-based BCI can be used to

develop algorithms tailored to individuals following brain

reorganization, and the algorithms can adapt to further neural

changes following BCI training; issues that are crucial for

clinical populations.
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