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Recent advances in blood oxygen level-dependent–functional MRI
(BOLD-fMRI)-based neurofeedback reveal that participants can
modulate neuronal properties. However, it is unknown whether
such training effects can be introduced in the absence of partici-
pants’ awareness that they are being trained. Here, we show un-
conscious neurofeedback training, which consequently produced
changes in functional connectivity, introduced in participants who
received positive and negative rewards that were covertly coupled
to activity in two category-selective visual cortex regions. The re-
sults indicate that brain networks can be modified even in the
complete absence of intention and awareness of the learning sit-
uation, raising intriguing possibilities for clinical interventions.
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There has been a growing interest in the field of neuroscience
in the use of neurofeedback (NF) as a tool to both study and

treat various clinical conditions. The uses of NF are diverse,
ranging across a variety of motor and sensory tasks (1–4), in-
vestigation of cortical plasticity and attention (5–9), to treatment
of chronic pain, depression, and mood control (10–13).
Recent advances in functional MRI (fMRI) techniques and

hardware have made real-time fMRI (rtfMRI) a viable method
for NF (14). This enables more anatomically specific training
compared with methods such as EEG. This enhanced localization
additionally allows to provide feedback to differential activation
patterns (6, 15, 16), beyond simple up/down-regulation of a specific
region/frequency.
Another advance in the field of NF is the finding by several

recent studies that participants are able to learn to successfully
perform the NF paradigm, even without being given an explicit
strategy (8, 16). This form of implicit learning is intriguing, both
because there have been reports indicating certain advantages to
implicit over explicit learning (17, 18), but mostly because this
opens up previously unidentified pathways for therapeutic in-
tervention, for cases for which there are no specific explicit
strategies available (for instance, control over complex networks,
such as in epilepsy, or over brain regions whose function is not
fully elucidated).
However, an important common factor in all previous NF

studies was the fact that participants were aware that they were
being trained, and received specific goals for this training. A
fundamental question that therefore remains unanswered is
whether targeted brain networks can still be modulated even in
the complete absence of participants’ awareness that a training
process is taking place. Theories of closed-loop learning provide
evidence that such implicit learning through reward cues is
possible (19, 20). This is an important issue, because it may open
the way for NF training even in severe clinical cases such as
minimally conscious or vegetative state, where such awareness
is absent.
In the present study, we examined this question in fMRI ex-

periments in which participants were informed that they were en-
gaged in a task aimed at mapping reward networks. Unbeknownst
to them, these rewards were coupled with fMRI activations in

specific cortical networks. Participants received auditory feedback
associated with positive and negative rewards, based on blood ox-
ygen level-dependent (BOLD)–fMRI activity from two well-
researched visual regions of interest (ROIs), the fusiform face area
(FFA) and the parahippocampal place area (PPA) (21–23). How-
ever, participants were not informed of this procedure and be-
lieved, as revealed also by postscan interviews and questionnaires,
that the reward was given at random.
We have examined whether participants could learn implicitly

to appropriately modulate their spontaneous cortical activity to
increase reward. Previous work in our group (24) and others (25–
27) has demonstrated that training effects, albeit with explicit
participants’ awareness of the training procedure, may leave a
trace in the spontaneous patterns. Our question was whether such
a trace could be similarly found following our covert training, with
the crucial difference being that here participants had no explicit
knowledge of the NF task, or even that it was possible to influence
the reward.
Our results show that 10 of 16 participants (62.5%) were in-

deed able to modulate their brain activity to enhance the positive
rewards. Importantly, participants were completely unaware that
they were so doing. We further show that this ability was asso-
ciated with changes in connectivity that were apparent in the
posttraining rest sessions, indicating that the network changes
resulting from the training carried over beyond the training
period itself.

Results
Implicit NF. A total of 18 participants was enrolled in this study.
Two were removed from the experiment after the first day of
scanning, due to excessive movement (Methods). The remaining
16 participants were scanned on 5 separate days, within a 1-wk
time frame. Before the start of the experiment, participants were
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randomly assigned to either the “FFA-positive” or the “PPA-
positive” group (hence FFA/PPA group). FFA and PPA were
identified from an independent localizer, which was collected
before the beginning of the experiment in a way that would avoid
any association between the localizer and the main experiment
(Methods). Sessions were identical across days and were com-
posed of the following scans: (i) a 9-min rest scan, for which
participants were instructed to simply remain still with their eyes
closed; (ii) five consecutive NF scans, each 10 min long; (iii) a
final 9-min rest scan, for which again participants were instructed
to rest with their eyes closed (Fig. 1).
During the NF scans, for each repetition time (TR), partici-

pants received either positive, negative, or no auditory feedback
sounds. Feedback was determined by an algorithm that compared
activity levels (relative to baseline) in the FFA with those in the
PPA, separately for each TR. For the FFA group, positive
feedback was given if the FFA was activated above the PPA and
over a certain threshold, whereas negative feedback was given if
the PPA was more active than the FFA (using the same thresh-
old). If the ratio of FFA/PPA activation was below threshold, no
feedback was given. This was the same for the PPA group, with
the roles of FFA and PPA reversed (Methods). In order for the
participants to remain engaged, and yet still have ample room for
improvement, the threshold was set so that either positive or
negative feedback would be received in roughly one-third of the
TRs, which with our scanning parameters translated to ∼100
feedback events for each scan. On average across all scans and
subjects, there were 5.9 TRs between positive tones, and 6.2 TRs
between negative tones. Overall, 36.4% of positive tones and
35.5% of negative tones were consecutive (i.e., following another
positive/negative tone). Participants were instructed to lie in the
scanner with their eyes closed, and press one button on the re-

sponse box for each positive-feedback sound, and another button
for negative-feedback sounds.
Importantly, participants were not informed that the reward

depended on their own brain activity. Rather, participants were
told that the experiment was aimed at mapping positive and
negative reward responses and that they would receive monetary
compensation for each positive sound and would lose a similar
amount for each negative sound. The sounds were chosen to be
inherently associated with good/bad connotations (similar to
computer game win or lose sounds). This created an implicit
incentive for participants to wish for positive feedback while
avoiding negative feedback, without knowing that the sounds
reflected the activity levels in their visual cortex. The button-
press task was designed to maintain alertness and attentiveness
to the feedback. Participants were told that they must press the
correct button after each positive/negative sound, or else they
would lose the monetary reward (in the case of the positive
feedback) or would be further monetarily penalized (in the case
of the negative feedback).
In postexperiment questionnaires, participants were found to

have no knowledge of the origin of the feedback sounds. Eleven
of 16 participants thought the feedback sounds were random, 4
of 16 thought they might be based on their button-press response
times or their mood, and only 1 participant suspected they might
be some kind of NF based on other cortical activity. There was
no correlation between success rates and participants’ beliefs as
to the nature of the feedback. When told that the sounds were
indeed NF based on activity in two cortical regions, none of the
participants had any strong notion of what the feedback might be
correlated with. When presented with a five-alternative forced
choice (Methods), participants were at chance in correctly iden-
tifying source of the feedback, and explicitly said that they
were guessing.

Mapping the Algorithm’s Effect onto the Brain. To examine the
differential BOLD response to the positive vs. negative reward
feedback sounds, we constructed a protocol based on the timing
of these feedback sounds. Fig. 2 shows the random effects group
analysis of the positive > negative contrast of the general linear
model (GLM) built on this protocol, when adding the typical
hemodynamic response of 6 s. This represents the differential
response to the feedback sounds themselves, as opposed to the
events that triggered the feedback. This figure shows that audi-
tory cortex was more strongly activated for positive vs. negative
sounds, which may be related to differential saliency of the
positive vs. negative audio cues. More interestingly, however, is
the activation found in the reward network-associated caudate
body and lentiform nucleus, which may be related to the positive
reward aspects of the sounds.
Because of the slow nature of the BOLD response, the feed-

back was actually given on neural activity that had taken place
∼6 s earlier (Discussion). To visualize the activity that triggered
the feedback, we used the protocol based on the timing of the
feedback sounds, but without adding the typical hemodynamic
response function. Fig. S1 shows the results of the random-effects
group analysis of the positive > negative contrast of the resulting
GLM. It is apparent that, apart from lower activation in the “bad”
ROI, there was widespread activation in networks associated with
the “good” ROI, as well as increased activation in the thalamus,
cerebellum, and posterior cingulate cortex. In other words, the
activation in the brain at the time the feedback was produced was
of a widespread nature, rather than being limited only to the
targeted ROIs.

Modulation of Network Activity Following NF. To assess whether the
covert NF training actually elicited significant changes in the
relative FFA/PPA activation levels, we examined the algorithm’s
output (which for each TR, could be positive, negative, or neutral)

Fig. 1. Experimental paradigm. Participants were scanned for 5 d, with each
day composed of an initial rest scan, five NF scans, and a final rest scan.
During the NF, activity levels in our two chosen ROIs were contrasted in each
TR, and participants were provided with auditory feedback based on the
output of an algorithm that calculated the differential activation for these
two ROIs. Feedback could be either positive, negative, or none. Participants
were instructed to respond with a button press whenever they heard either
a positive or negative beep.

2 of 8 | www.pnas.org/cgi/doi/10.1073/pnas.1516857113 Ramot et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1516857113/-/DCSupplemental/pnas.201516857SI.pdf?targetid=nameddest=SF1
www.pnas.org/cgi/doi/10.1073/pnas.1516857113


both during the NF sessions and the rest sessions before and
after the training. During NF, positive/negative algorithm output
triggered positive/negative-feedback sounds, whereas a neutral
output triggered no feedback. For rest sessions, the same algo-
rithm was used in the same way as with NF; however, its output
was not set to trigger any feedback. In this manner, we obtained
a record of the algorithm’s output for the rest sessions, calcu-
lated in exactly the same way as for the NF, with the only dif-
ference being that the participants did not receive feedback on
this output. For each session, we examined the number of pos-
itive algorithm outputs as a percentage of overall total positive-

plus-negative output (positive/positive + negative). Successful
participants were defined as those with over 50% positive
outputs accumulated across all of the NF sessions. Ten such
successful participants were identified from our data, six be-
longing to the FFA group, and four to the PPA group. There
was no significant difference between the total number of
feedback events (positive + negative) between the successful and
unsuccessful participants. Although the number of successful
participants is not in itself significant, there were a number
of critical differences between the successful and unsuccessful
participants.

Fig. 2. Mapping the reward. The GLM was built on the protocol based on the feedback events, so that it corresponds to the effect of the feedback
sounds. The maps show the positive > negative contrasts, for all subjects. The activation in auditory cortex (marked by cyan outline) may be related to the
reward, or perhaps to the increased saliency of the positive feedback. Note the activation in the caudate nucleus and the putamen, both known to be
involved in reward. A, anterior; CS, central sulcus; IPS, inferior parietal sulcus; LS, lateral sulcus; P, posterior; PCS, postcentral sulcus; POS, precuneus; PreCS,
precentral sulcus; STS, superior temporal sulcus.

Fig. 3. Within-session learning effects. Each dot represents the difference in success rate between the post-NF rest scan and the pre-NF rest scan according to
the algorithm’s output (positive/positive + negative) for the average of the first 3 scanning days, vs. the averaged success rate of the five NF scans for those
days, for one participant. Data for the successful participants are shown in A, whereas data for the unsuccessful participants is shown in B. (C) Results of the
reversal analysis. The mean and SEM (calculated between subjects) of the success rate (positive/positive + negative) for each condition (pre-NF rest, NF, post-
NF rest) is shown for the four successful reversal subjects. The average of the first 3 prereversal days shown in red, and the average of the last 2 postreversal
days is shown in blue.
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In each day, successful participants showed improved perfor-
mance for the training sessions compared with the pretraining
rest. Importantly, although there was no significant change in
performance between days, either between the NF sessions or
the pretraining rest sessions, there was a consistent and signifi-
cant improvement from the pre-NF to the post-NF rest for each
day, for the successful subjects only. It should be noted that, as
described above, the successful participants were chosen based
on their performance during the NF sessions only, which should
not in itself predict this change between the rest sessions. Fig. 3 A
and B shows this difference in the algorithm’s output for the
post-NF rest minus pre-NF rest, vs. the algorithm’s output for
the NF session each day, for the successful and unsuccessful
participants, respectively. For each subject, we used the average
of the first 3 prereversal days (see below for explanation of re-
versal condition). The successful subjects showed a positive and
significant correlation between the change in rest performance
and the NF success for each day for these days (r = 0.67, P < 0.017,
calculated by permutation test). Because it is impossible to reliably
calculate significance for the unsuccessful subjects using only six
data points, we repeated the analysis using all of the data points,
although this has the problem of combining both within-subject
and between-subject correlations. We again found a significant
correlation for the successful subjects (r = 0.41, P = 0.027, per-
mutation test), but no such trend for the unsuccessful subjects (r =
−0.15, P = 0.68, permutation test).
To assess the statistical significance of this increase from

pretraining to NF, and from pretraining rest to posttraining rest,
we performed a permutation test, shuffling daily session labels
1,000 times. For the successful participants, across both reversal
conditions and all days, these changes were significant (P < 0.012
for NF vs. pre-NF rest, P < 0.015 for post-NF rest vs. pre-NF
rest). A similar analysis on the unsuccessful participants revealed
no such significant difference.
Of the 16 participants, 6 participants were assigned to a reversal

condition, meaning that on the fourth of five training days they
were switched to the alternative (FFA/PPA) group. This reversal
condition was aimed at neutralizing any potential baseline bias
effects that might occur in each individual participant, randomly
predisposing that participant to more positive/negative outcome
regardless of the training. If these results were a product of such a
simple baseline bias, then reversing the positive/negative ROIs
would consequently reverse the bias, predicting a reversal of the
algorithm’s outcome. Of the 10 successful participants, 4 belonged
to the reversal condition group. To see the results of this reversal,
we looked at the four reversal participants only, and analyzed
separately the first 3 d before the reversal, and the last 2 d after
the reversal occurred. The results are shown in Fig. 3C. There was
a drop in performance following the reversal, but not a reversal in
outcome, which is what would be expected if these results were the
consequence of a random baseline bias, rather than a result of the
NF. Although the average NF performance was still slightly neg-
ative, the same trend of an increase between pre-NF rest, NF, and
post-NF rest was evident.
Looking only at the reversal condition revealed that, even for

just this subset of successful participants during the reversal days,
the post-NF rest outcome was also significantly greater than pre-
NF rest outcome (P = 0.033, permutation test), although the NF
was not significantly greater than pre-NF rest (P < 0.11). Al-
though there was a positive trend in changes between days, both
between rest sessions and between NF sessions, this trend did not
reach significance.

Resting-State Functional Connectivity Training Effects. To assess the
daily changes in functional connectivity in the resting-state ses-
sions before and following the NF, we first calculated, for each
voxel, the changes in global connectivity. Global connectivity was
defined as the average correlation of that voxel to every other

voxel. This measure has previously been demonstrated to provide
a sensitive marker for mapping NF training effects (24). For each
participant, we subtracted the global connectivity value for each
voxel in the pre-NF rest sessions from the post-NF rest sessions
(averaged across days), and then performed a t test across par-
ticipants (a form of random-effects analysis). The advantage of
this approach is that it does not require any prior assumption
about the training ROIs. To avoid any possible bias due to the
selection of participants, we included all participants in this
analysis, not just the successful ones. The results of this analysis
are displayed in Fig. 4. As can be seen, there was a significant
change between pre- and post-NF rest sessions in only a small
number of voxels, most of which were located in left PPA, which
was anatomically the most stable ROI across participants (see
Inset in Fig. 4, showing the overlay of the PPA ROI for all suc-
cessful participants). There was another small cluster of voxels in
auditory cortex showing a significant increase in global connec-
tivity, as well as in the right inferior parietal lobule. We reran this
analysis for the PPA and FFA groups separately, and received a
very similar map for the PPA-only group. For the FFA group, we
found no significant changes between the pretraining and post-
training rest sessions that survived correction for multiple com-
parisons. This is possibly due to anatomically incongruent location
of the FFA ROIs between participants, which makes such a group
analysis difficult.
We next examined the effects of the NF on the functional

connectivity to our two ROIs. To this end, we ran a functional
connectivity analysis, which calculates for each voxel its degree of
correlation with the good (positively rewarded) ROI, and with
the bad (negatively rewarded) ROI, which for each participant
was dependent on their assignment to either the FFA or the PPA
group. We chose to focus on the first 3 d, which were unaffected
by the reversal analysis. For each participant, the functional
connectivity of each voxel to the good and bad ROIs was cal-
culated for the average of the five NF sessions for each day. Fig.
5 shows the results of a t-test analysis across all 10 successful
participants per day. Note that there were almost equal instances
where the FFA was the good ROI as when the PPA was the good
ROI. As can be clearly discerned from the figure, a preference
for the good ROI started emerging on the second day, with many
voxels significantly more correlated to the good ROI than to the

Fig. 4. Global connectivity index. The global connectivity index (the aver-
age correlation of that voxel with all other voxels) was calculated for each
voxel for the pre-NF rest condition of each day. This was then subtracted
from the global connectivity index for the post-NF rest condition for each
day, and averaged across days. A t test between all subjects was then cal-
culated (n = 16). The map shows all significant voxels of this analysis,
thresholded with Monte Carlo correction for multiple comparisons. Colorful
outlines denote the PPA ROI for each successful subject. Note that the sig-
nificant voxels, found primarily in the PPA and auditory cortex, signify in-
creased global connectivity for the post-NF rest. Abbreviations are the same
as in Fig. 2.
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bad ROI, including regions of the “default-mode” network,
striatum, brainstem, and thalamus. The difference between day 2
and day 1 in the number of voxels preferentially correlated to the
good vs. bad ROI was significant, as was the difference between
the first and third day (P = 0.047, P = 0.022, corrected, calcu-
lated by permutation test; Fig. 5, Inset). An analysis of the entire
group of participants shows similar but weaker results. When
looking at only the first NF session of day 1, we found no voxels
showing a significant preference to the good ROI.

Discussion
Spontaneous Connectivity Changes Following Covert Activity–Reward
Associations. Our results are a further indication that rtfMRI-
based NF can succeed without an explicit strategy, as has pre-
viously been shown (8, 16). However, the present study takes the
implicit learning paradigm described in those papers a step
further, by removing all awareness to the association between
reward and brain activations. The successful participants showed
a link between the modulation of the trained networks during the
NF, and subsequent changes in resting-state connectivity, with-
out being aware that activity–reward association was imple-
mented in their brain, and without intending or attempting to
learn. Furthermore, they did so without any knowledge of having
this reward–activity association implemented, as shown by the
postexperimental questionnaires. Finally, our results expand the
range of training strategies by demonstrating that a NF effect can
be achieved using localized univariate signals as targets rather
than multivariate patterns used in previous research (16).
An important issue concerns the possibility that the results

reported here were due to effects unrelated to the NF. In par-
ticular, slow random fluctuations in BOLD signal and correla-
tions as well as random structural biases should be ruled out.
The random division into FFA and PPA groups was intended

to rule out any structural bias in favor of one of those ROIs that
might influence the algorithm’s output, while creating an in-
trinsic control group. The distribution of successful participants
between the two groups (six FFA, four PPA) is indicative that
there was no such consistent bias toward one ROI or the other

that could explain the observed NF learning. It is possible that,
although there was no consistent structural bias in favor of either
FFA or PPA, each participant had a small individual bias in favor
of one of these ROIs. The reversal procedure was used to control
for such an individual baseline bias, by testing both FFA-positive
and PPA-positive directions of the algorithm on the same par-
ticipant. Four of six participants were successful in recovering
from this reversal, and although there was a decline in perfor-
mance, which might be expected after 3 d of training in the
opposite direction, there was no reversal of the results, which is
what would be expected if the algorithm output were a reflection
of a simple baseline bias (Fig. 3C).
There remains the issue of the slow fluctuations, which might

in theory account for the link we see between the pre-NF rest,
NF, and post-NF sessions. Because it is difficult to distinguish
such putative “slow fluctuations” from real changes, the best way
to attempt to differentiate the two was to look at the difference
between the successful and the unsuccessful participants in this
regard. Fig. 3 A and B clearly shows that, although there was a
clear link (i.e., a significant correlation between the NF success
and the improvement between rest sessions for each day) for the
successful participants, such a trend was absent among the un-
successful participants. This was further verified in the permu-
tation tests, which found the difference between the post-NF
rest/pre-NF rest to be significant for the successful subjects, but
not for the unsuccessful ones.
A related question is why some participants did not show NF-

related changes. It should be noted that the task was highly de-
manding, requiring differentiation of two neighboring visual
areas, and participants were hindered by many factors. Note also
that, because of the hemodynamic delay, the feedback was
delayed by ∼6 s. Although it has been shown that different
participants can have slightly different hemodynamic delays (28),
ranging from as low as 4 s, this should not influence the algo-
rithm output, as the algorithm itself does not take this delay into
account. Rather, it simply applies the rule for the signal mea-
sured each TR, regardless of when that neuronal activity was
generated. This would mean that the feedback delay for different

Fig. 5. Network changes in functional connectivity during the NF. Maps show voxels significantly more correlated to the good ROI than to the bad ROI, for
the average NF scans on days 1–3 (t test across subjects, successful participants only, n = 10). Starting on the second day, many voxels show a preference for the
good ROI, primarily in the default-mode network, cingulate cortex, thalamus, striatum, brainstem, and cerebellum. Inset shows the number of voxels sig-
nificantly more correlated to the good ROI. A permutation test shows that the difference in this number between day 1 and day 2, as well as between day 1
and day 3, is significant. Abbreviations are the same as in Fig. 2.
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participants might be slightly different, although consistent for
each participant. Moreover, many other NF studies with simpler
learning tasks, as well as EEG studies that do not suffer from
built-in delay, also report that a certain percentage of partici-
pants fail the task for unknown reasons (6, 10, 29, 30). This in
fact is such a widespread phenomenon in NF and brain–com-
puter interface (BCI) literature that it has its own term, BCI
illiteracy (31, 32).
Another possibility that merits further exploration, given our

current data showing global connectivity changes involving PPA
but not FFA (Fig. 4), is that some cortical areas may be easier to
train than others. Future studies should further test this hypothesis.
To ensure that the feedback itself did not somehow influence

the results, we decided to deliver it in a different modality. Al-
though most NF studies of sensory and particularly visual areas
use same modality feedback (8, 16), other studies on higher-order
cognitive ROIs have shown that such cross-modal integration of
feedback is possible (7, 24). Such cross-modal integration of
feedback is in itself an interesting phenomenon, suggesting an
integrated reward-learning network (33).

Networks Involved. Fig. 4 shows that most of the consistent
changes in global connectivity levels, which persisted beyond the
NF sessions themselves and into the post-NF rest session, were
found in one of the task ROIs, left PPA. There were also some
traces in another strongly task-related region, the auditory cor-
tex. This increase in global activation in PPA is likely related to
the large network that could be seen to coactivate along with the
good ROI (Fig. S1). Because the individual ROIs were defined
according to an independent functional localizer, there was not
much overlap between the FFA ROIs of individual participants,
which might explain why we did not see this rise in global con-
nectivity in FFA on the average of all participants. Alternatively,
there may be some inherent differences in the relative sensitivity
of the FFA to NF manipulations. We have recently reported that
the PPA is significantly more sensitive to NF-fMRI activation
compared with the FFA (34).
The overlap in the individual PPA ROIs, however, was

greater, and the changes in global connectivity were indeed
found where the ROIs from the greatest number of participants
overlapped (Fig. 4, Inset).
Fig. 4 provides evidence that the changes in global connectivity

were well localized to NF-related areas. As can be seen from Fig.
5, the networks involved in the increased connectivity to the good
ROI were widespread, and included areas known to be involved in
learning and reward, such as the brainstem, lentiform nucleus, and
the caudate (35–37). Areas of the default-mode network were also
significantly more correlated to the good ROI, indicating a pos-
sible role of this network in the NF effect. Because the identity of
the good and bad ROIs was counterbalanced between FFA/PPA,
this cannot be a structural change related to one of those regions.
Note that these changes in functional connectivity are not pre-
dicted by success as measured by the algorithm, which is triggered
by greater activity in the good vs. the bad ROI.
The widespread nature of the connectivity changes is compati-

ble with previous work showing that NF training may affect entire
networks. For example, targeted NF activation of the anterior
cingulate cortex led to a long-term change in a widespread fron-
toparietal network (24).
In the present study, we failed to find a long-term improve-

ment in performance across days. A number of factors may ac-
count for this. A major limitation is the long hemodynamic delay
that induced a long (4–6 s) temporal gap between the neuronal
activity and the reward. Additional potential problems could be
the limited number of training events and the long intersession
interruptions in which competing associations may have weak-
ened the training trace.

It should be noted that a transient trace of the training did
persist in the connectivity structure measured in the rest session
immediately following the training (Fig. 4). Although this may
seem surprising, a growing body of recent research points to such
resting-state connectivity changes as a sensitive marker for prior
training and individual experience. In fact, we have previously
proposed that traces of cortical networks’ coactivations during a
NF task or during habitual cortical activation could later be seen
in enhanced connectivity during the resting state (38, 39). Fig. 5
itself also shows long-term changes in connectivity related to our
two training ROIs. These results are in line with the well-docu-
mented effect of NF training on changes in network functional
connectivity (24, 40–43). The changes in resting-state connec-
tivity following training thus extend previous NF training based
on spontaneous fluctuations that showed changes in activation
during training (16, 44).

Increased Activation in High-Order Areas Does Not Necessarily
Generate Conscious Percepts. The present findings contribute in-
sights into another fundamental question, which is the extent to
which we are aware of the slow spontaneous fluctuations that
emerge in cortical networks. Although there were widespread
changes both in connectivity (Figs. 4 and 5) and in overall acti-
vation levels associated with the NF (Fig. S1), participants did
not make the connection between any conscious percepts
(thoughts, imagery) they experienced during the NF, and the
feedback they received. Nor were they able, given a forced-
choice questionnaire, to correctly guess which areas were re-
sponsible for the feedback. This failure reveals that participants
did not become aware of their NF-related spontaneous fluctua-
tions. These results are important because they extend the pre-
viously reported findings of failure to become aware of specific
V1 activation patterns (16), to high-order visual areas, whose
activity has been consistently demonstrated to be more closely
linked to perceptual awareness (45, 46). Together, these findings
argue against the suggestion that the slow spontaneous fluctua-
tions reflect stream of conscious thoughts and images, but rather
that this activity remains largely subliminal (47–49).

Conclusions and Implications. Essentially, NF can be considered a
way of teaching participants to control cortical function by cre-
ating a new feedback pathway, or in a sense, establishing a new
reward-control loop. The present study demonstrates that such a
reward-control loop can induce connectivity changes even with-
out the participant’s knowledge and awareness.
These new control loops are the true power of NF. They could

potentially allow us to train and correct widespread network
configurations in the brain that are associated with various pa-
thologies, which might be difficult to control via an explicit task
or strategy. Thus, an implicit NF, such as reported here, might
represent a major advance in our ability to manipulate such
networks. The covert NF paradigm described in this paper, when
further optimized, may have potential uses with severe clinical
populations, for which task compliance, and even conscious
awareness is sometimes difficult to ensure. Further research is
necessary to optimize this implicit NF methods in other condi-
tions as well.

Methods
Participants. Eighteen healthy participants (11 women, aged 24–35) partici-
pated in the experiments. Two participants (1 woman) were disqualified
after the first day, due to excessive motion during the scans (>1 mm). The
remaining 16 participants participated in all 5 d of the experiment. All
participants were right-handed, and had normal or corrected-to-normal
vision. The Tel-Aviv Souraski Medical Center ethics committee approved
the protocol and informed consent was obtained from all participants.
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Experiments.
Visual localizer experiment. A conventional static object-visual localizer was
used to identify FFA and PPA in each subject (50). Data from such a localizer
was either already available for participants who had previously participated
in prior studies in our laboratory, or was collected between 2 wk to 24 h
before the beginning of the NF experiment, by a different experimenter,
ostensibly for the purpose of a completely different study. On post hoc
questioning, not a single subject suspected any connection between the
visual localizer experiment and the NF experiment.
NF experiment. Participants were scanned for 5 d. These days were consecutive
whenever possible (consecutive for 13 of 16 participants, conducted over the
course of 7 d for the remaining 3 of 16 participants). Each day consisted of an
anatomical scan, followed by seven functional scans, in this order: a 9-min rest
scan, five iterations of a 10-min NF scan, and a final 9-min rest scan. All scans
were conducted in total darkness, with eyes closed. The anatomical scan was
conducted first, to allow the coregistration of scans on different days to the
same anatomical space. Participants were randomly assigned to either the
FFA-positive or PPA-positive group. Participants were randomly assigned to
either use their right hand for good responses and left for bad, or vice versa.
For visualization purposes in the figures, auditory cortex was defined based
on a random-effects group analysis of the feedback sounds of the first NF
session of the first day for each subject (all sounds > no sound). Note that this
analysis uses only a small subset of the data.

NF Algorithm. TheNF algorithm looked at differences in activation between the
two target ROIs. The raw average activation value at each TR was first nor-
malized for each ROI individually. To achieve this, the first 15 TRswere collected
as baseline, and no feedback was provided. The median value during this time
periodwas considered the baseline. This baselinewas continuously updated for
the first 50 TRs as more data were collected, and after the first 50 TRs, a sliding
window was used so that the baseline was always calculated as the median
value over the last 50 TRs. The slidingwindowwas implemented to compensate
for any drift in the signal. For each TR, good feedback was provided if the
normalized activation in the target good ROI (for that TR), divided by the
normalized activation in the target bad ROI (for that TR), was above a certain
threshold, as well as above the baseline activation for the good ROI (i.e., the
median value of the last 50 TRs). This rule was for each single TR separately;
there was no demand for the signal to be higher than threshold for more than
one TR. As a result of this rule, good feedback was only ever awarded if the ac-
tivation levels in the good ROI could be said to be positive, and higher than ac-
tivation levels in the bad ROI. Bad feedback was provided if the normalized
activation in the bad ROI divided by the normalized activation in the good ROI was
above the same threshold, and also the activation in the bad ROI was higher than
the baseline of that ROI. The threshold was chosen so that either positive or
negative feedback would be received for roughly one-third of the TRs. This
threshold was calculated by running a simulation of the algorithm on previously
collected restdata. The identityof thegoodROI (whetherFFAorPPA)was randomly
decided for each participant. For reversal participants, this identity was flipped on
the beginning of the fourth day.

Postscan Interviews. Immediately following the last scan session on the last day,
participants underwent a detailed interview focused on assessing their aware-
ness of the study purpose and theNF. Participantswere first asked towrite down
any thoughts they had on the purpose of the experiment, and any thoughts/
feelings associated or elicited by the feedback sounds. Next, participants were
asked whether they thought they had any influence over the sounds they had
heard during the experiment. Finally, the purpose of the experiment as a NF
study relying on two areas of cortex was revealed, and participants were asked
whether they had any notion of what might be driving the feedback. All
participants reported having no notion at all as to what this might be. Reversal
subjects were also asked whether they felt any change in the feedback at some

point during the experiment, towhich theyall replied negatively. All participants
were then given a five-alternative forced choice for which region/function was
associated with the positive and negative rewards: face-related imagery, places/
houses-related imagery, abstract visual forms, language, and body/motion-
related imagery, resulting in guesses at chance level.

Imaging Setup. The scans were performed on a 3-T Trio Magnetom Siemens
scanner at the Weizmann Institute of Science (Rehovot, Israel). Three-
dimensional T1-weighted anatomical images were acquiredwith high-resolution
1-mm slice thickness [3Dmagnetization-prepared rapid acquisition with gradient
echo sequence; TR, 2,300 ms; echo time (TE), 2.98 ms; 1 × 1 × 1-mm voxels].
BOLD contrast was obtained with gradient echo-planar imaging sequence
[TR, 2,000 ms; TE, 30 ms; matrix size, 80 × 80; scanned volume, 32 axial slices
of 3-mm thickness (no gap, 3 × 3 × 4-mm voxel), anterior commissure/
posterior commissure].

Data Analysis and Preprocessing. rtfMRI data were analyzed with the “Turbo-
BrainVoyager” (TBV) software package, a real-time processing, analysis, and
visualization application, which receives dicoms from the scanner, along
with complementary in-house software. A feature of TBV allows coregis-
tration of scans on different days, thus ensuring anatomical accuracy for the
selected target ROIs. Preliminary data preprocessing such as motion correc-
tion was carried out in TBV, and then the average raw values of each ROI
were saved for each TR. These values were then read by our in-house soft-
ware using Matlab, which executed the NF algorithm for each time point
(see above). The algorithm then determined the appropriate feedback for
each time point (positive, negative, or none), which was then delivered to
the participant through MRI-compatible headphones (MR Confon). Partici-
pant button presses were recorded using the Matlab PsychToolbox.

fMRI data were analyzed with the “BrainVoyager” software package (Brain
Innovation) and with complementary in-house software. The first two images
of each functional scan were discarded. The functional images were super-
imposed on 2D anatomic images and incorporated into the 3D datasets
through trilinear interpolation. The cortical surface in a Talairach coordinate
system (51) was reconstructed for each subject from the 3D-spoiled gradient
echo scan. Preprocessing of functional scans included 3D motion correction
and filtering out of low frequencies up to three cycles per scan (slow drift).
Statistical analysis/mapping was based on the GLM, with the regressor built on
events of positive/negative feedback either without applying the standard
hemodynamic response function (equivalent to shifting back 6 s in time) for
the results shown in Fig. S1, or unshifted in time for the results in Fig. 2. The
analysis was performed independently for the time course of each individual
voxel. After computing the coefficients for the regressor, Student’s t test was
performed. In calculating P values, the autoregression factor was taken into
account (BrainVoyager software package), because consecutive fMRI data
points of the regressor are not statistically independent due to the nature of
the hemodynamic response. Student’s t test for each voxel between subjects
was then carried out. The multisubject functional maps were projected on an
unfolded Talairach normalized brain. Significance levels were calculated, tak-
ing into account the minimum cluster size and the probability threshold of a
false detection of any given cluster. This was accomplished by a Monte Carlo
simulation (AlphaSim by B. Douglas Ward, Medical College of Wisconsin,
Milwaukee), using the combination of individual voxel probability thresh-
olding and minimum cluster size of 30–52 voxels; the probability of a false-
positive detection per image was determined from the frequency count of
cluster sizes within the entire cortical surface.
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Fig. S1. Mapping the algorithm onto the brain. A protocol based on the algorithm output was constructed for the NF sessions, but the standard hemodynamic
response function (HRF), which essentially shifts the predictor 6 s in time, was not applied. The resulting GLM thus reflects the underlying neuronal events that
precipitated the algorithm’s outcome, rather than the feedback events. The top panel shows the positive > negative contrast for the FFA group participants,
the middle panel shows the same for the PPA group, and the bottom panel shows the results of the positive > negative contrast for both groups, in the
subcortex. Note that, as expected, the FFA group shows higher activation in FFA and decreased activation in PPA, whereas the PPA group shows the opposite.
Approximate group locations of FFA and PPA ROIs are marked with red (FFA) and green (PPA). L, left; R, right; all other abbreviations are the same as in Fig. 2.
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