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Abstract—We have developed Brain-Voyant, an efficient
general-purpose machine learning tool for real-time functional
magnetic resonance imaging classification using whole-brain
data, which can be used to explore novel brain-computer in-
terface paradigms or advanced neurofeedback protocols. We
have created a convenient and configurable front-end tool that
receives fMRI-based multi-voxel raw brain data as input. Our
tool processes, analyses, classifies and transfers the classification
to an external object such as a virtual avatar or a humanoid
robot in real-time. Our tool is focused on minimizing delay time,
and to that end, it employs a method that is based on examining
in advance the voxels that have been found to be task-relevant
in the machine learning model training phase.

The tool’s code base was designed to be easily extended to
support additional feature reduction, normalization and clas-
sification algorithms. This tool was used in several published
studies using motor execution, motor imagery, and visual cate-
gory classification in cue-based and free-choice brain-computer
interface experiments, with both healthy and amputated subjects.
This tool is not limited by number of classes, is not limited to
predefined regions of interest, and classifier instances can run
in parallel to combine multiple classification tasks in real time.
Finally, our tool is able use the slow peaking blood-oxygen-level
dependent signal to classify our subjects’ intention during the
two-second window TR. We release this tool as open-source for
non-commercial usage.

I. INTRODUCTION

Brain-Voyant is based on statistical machine learning clas-
sification of subjects’ brain state in real time and converges
on task-relevant voxels based on whole-brain activity. We
automatically classify subjects’ intentions in a single session
and in real time, and transmit their intentions to an external
device (avatar or a humanoid robot), which allows the subject
in the functional magnetic resonance imaging (fMRI) scanner
to perform tasks in a virtual environment or in the physical
world. We built Brain-Voyant to be efficient and robust in
terms of usability and processing time, to be flexible in using
multiple machine learning schemes, and to be used in offline
or real-time fMRI brain-computer interface (BCI).

Real time fMRI is a promising risk-free non-invasive
method for next generation neurofeedback (NF), rehabilitation,
rapid functional mapping, and basic neuroscience. Due to its
superior spatial resolution, fMRI may be used to classify a
much wider set of mental patterns than electroencephalogram
(EEG) and may thus facilitate exploring new BCI paradigms.
FMRI-based BCI paradigms can be made to localize un-
derlying brain patterns and transfer the paradigms to other,

more accessible, signals, such as EEG (see [1]) and near-
infrared spectography (NIRS) [2]. There is also compelling
evidence that fMRI-based NF can have desired behavioral
outcomes [3]. It can be used for training paralyzed patients
before undergoing surgery for invasive BCI. In all these
cases, the high spatial resolution and whole-brain coverage
allows us to target and analyse very specific brain areas,
which are unknown beforehand – making fMRI BCI vital
for clinical populations. For example, our system allowed
amputees control of an external device with high accuracy
using their missing hand [4].

It has been argued that the fMRI raw-signal cannot be
used for real-time BCI due to the sluggish nature of the
blood-oxygen-level dependent (BOLD) signal, in the range
of 6 seconds delay [5]. However, we have demonstrated that
participants are able to rapidly adapt to the long delays, and by
likely developing a predictive strategy, achieve a remarkable
level of successful performance [6].

The last few years have established the superiority of mul-
tivariate pattern analysis (MVPA) and machine learning (ML)
over univariate analysis of discrete regions of interest (ROI)
of fMRI data [7], [8], and it is clear that many perceptual,
cognitive, or emotional states generally recruit a distributed
network of brain regions rather than single locations. However,
almost all real-time fMRI studies so far are based on feedback
from signals derived from single ROIs [9], [10]. Similar
studies have already shown the possibility and advantages of
data-driven, ML-based ROI selection for rt-fMRI BCI [11],
[12], but an ROI-based method will not work as well when
there is no prior knowledge about the brain patterns expected,
e.g., following brain injury or amputation [4], i.e., when the
participating voxels expand or move to other non-related brain
regions. These patterns are also individual as seen in Figure 1.
Other tools are less flexible in terms of normalization, feature
selection and classification algorithms [13].

Despite years of research on motor imagery EEG-based
BCI, there is only one study demonstrating 4 class, self-
paced navigation [14]. While it is impossible to compare
performance for a free choice task, the cue-based accuracy
indicates that our fMRI-BCI accuracy is much higher than
those achieved with EEG; in Scherer et al.’s study the top
3 subjects (selected from 8 candidates), reached levels of 71-
86% accuracy after three training sessions. Our results indicate
that all subjects can reach high accuracy (90%-95%) after a
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Fig. 1. A gallery visualization of the left vs right contrast using a p<0.05
for the cue-based and free choice tasks, for the amputee group

few trials.
Recently, there have been some first attempts at using real-

time fMRI for BCI, based on different mental tasks, such
as motor imagery, mental calculation, and inner speech [15],
using covert visual attention [16] and using motor imagery
to control a robotic arm [17]. We have also implemented a
real time BCI fMRI tool based on manually selected ROIs
for controlling an avatar [6] and a humanoid robot [18], in
which a baseline for ROI-based BCI performance and speed
was established.

There are several studies including online fMRI ML-based
methods, using online support vector machine (SVM) clas-
sification [19], controlling a robotic arm with 24.3 seconds
per decision [20], using predefined ROIs [21], [22], and
binary classification of left and right hand fingers with only
80% classification accuracy. Our tool is designed to inspect
the entire brain and find relevant voxels without relying on
predefined ROIs, which allows for faster intention-detection,
can go beyond binary classification scheme, and can also
detect covert states such as “rest”.

In previous papers [4], [6], [18] we have reported ex-
perimental results of high accuracy BCI control in various
schemes, demonstrating some of the advantages of our ap-
proach. In this paper we provide an overview of the technical
system and method behind these studies, explaining how our
approach can be used for a wide range of for real-time fMRI
ML-based research. Additionally, this tool is made available
to the BCI community1.

II. THE SYSTEM

A. fMRI scanner

Imaging was performed on a 3T Trio Magnetom Siemens
scanner, and all images were acquired using a 12 channel
head matrix coil. Three-dimensional T1-weighted anatomical
scans were acquired with high resolution 1-mm slice thickness,
3D MP-RAGE sequence, repetition time (TR) 2300ms, TE

1Brain-Voyant,https://github.com/orico/Brain-Voyant

2.98ms, 1mm3 voxels). For BOLD scanning, T2*-weighted
images using echo planar imaging sequence (EPI) were ac-
quired using the following parameters: TR 2000ms, TE 30ms,
Flip angle 80, 35 oblique slices without gap, 20 towards coro-
nal plane from Anterior Commissure-posterior Commissure
(ACPC), 3×3×4mm voxel size, covering the whole cerebrum.
Visual feedback is provided by a mirror, placed 11cm from the
eyes of the subject and 97.5cm from a screen, leaving 108.5cm
from the screen to the eyes of the subject. There is a trade-off
between the scanning rate and the number of slices scanned,
and we have opted for a scan time (TR) of 2000ms. Using
our scanner, a lower TR of 1000ms is possible if we scan a
smaller portion of the brain (i.e., less slices), but this would
prevent us from performing a full brain analysis in the future.

B. Implementation

The tool was coded in Microsoft Visual Studio C#, running
on Microsoft Windows 7. The minimum requirements are a
quad-core Intel i7 and 32 GB RAM. For feature selection
and classification we use Weka’s machine learning algorithms
API [23] that can be easily used to extend our tool. Our tool
was also integrated with external devices such as humanoid
robots and the Unity 3D game engine2, allowing a virtual
environment feedback for engaging subjects in a wide range
of scenarios and tasks.

Training and applying classifiers in real-time requires that
learning be executed faster than is generally done in the
application of ML to fMRI. Our tool is optimized for memory
usage, processing speed, and classification speed. To achieve
faster processing, we focus on several areas: feature filter-
ing, feature selection and removal of redundant samples. In
addition, we have used implementation techniques including
minimization of computational cycles and RAM consumption,
by using sparse data structures, using RAM instead of disk
access, and transferring data between processes by using an
inter-process communication method.

C. fMRI data preprocessing

Dicom files3 from the scanner are received and pre-
processed by Turbo Brain Voyager (TBV)4. : spatial Gaussian
smoothing is applied, and they are auto aligned by a real-
time algorithm that uses a statistical atlas to automatically
position the scanned slices [24] and applied with a real-time
three-dimensional motion correction algorithm, the prospec-
tive acquisition correction (PACE) algorithm, which adjusts
slice position and orientation in order to reduce motion arti-
facts [25]. This pre-processing is applied at the initial scan,
between every two scans for subsequent subject movement,
and when subjects return for additional scans, on different
days.

Additionally, we created a plugin for TBV that transmits
the fMRI recordings to our tool in real-time, using an inter-
process communication method. Each recorded data sample

2Unity Technologies, California, http://unity3d.com/
3http://medical.nema.org/
4BrainInnovation,Netherlands,http://www.brainvoyager.com/
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Fig. 2. The graphical user interface that allows ML training and testing under
the Windows platform.

is a 3D matrix of the entire brain area that is composed of
204,800 voxels, which hold the raw BOLD-derived values.
The 3D matrix is flattened into a 1-dimensional vector and
transmitted to our tool.

D. The Data

We record several runs for each subject, each recorded run
is composed of a 30-45 trials, and for each trial the data is
composed of 8 or 9 samples that correspond to the brain scans
in TRs 1 to 8-9 following the trial. We assign every data
sample with a label according to the balanced and predefined
experimental protocol. As a preliminary stage we have selected
one subject in order to find the optimal settings.

1) Front-end: Running a Study: The application (Figure 2)
includes a complete tool for running a wide range of real-time
fMRI studies with different experimental protocols, different
analysis methods, and it can interface with any external
device. The tool allows easily configuring classification and
interaction parameters during an experiment and playing back
experimental sessions. The initial parameters are embedded in
the graphical user interface and were selected empirically.

The application allows the researcher to select several initial
parameters such as a TBV-compatible protocol-file, a local
and remote IP addresses for the external device, a threshold
for the purpose of removing non brain voxels, the number
of horizontal lines and scan slices that will be deleted for
the purpose of removing the subject’s eyes, a TR that will
be used for training (i.e., where the signal peaks) and a
normalization formula and window size. In the training step,
the researcher selects whether to train using multi-class SVM
or to manually select two classes for a binary SVM classifier.
The last step is to select information gain (IG) parameters
such as the top K% (threshold) or amount of voxels. During
the entire process, the tool outputs information regarding the
protocol: the selected parameters, progress information for the
data reading, processing, feature selection and training. The
configuration is then saved to an XML file, the selected feature
selected voxels are saved to an XML file, the model is saved

as a Weka binary model file and the output log is saved to
a text file. Finally, we display the selected voxels overlaid on
a map of the subject’s brainand the 3D brain-image is saved
automatically.

In the testing phase, the researcher loads the configuration
file, which points to the protocol, parameters, feature indexes
and SVM model. The application automatically enters into a
data receiving mode and waits for data to be sent from TBV’s
plugin. When the data is received, the algorithm classifies it
and sends the classification over UDP to the external object.
At the end of the testing phase, the output log is saved to a
text file.

E. Data Processing

1) Noise and eye filtering: Our tool can reduce the feature
space by setting an activity threshold, which removes voxels
that belong to the empty space around the head. Furthermore,
we specify K voxel rows from the first J slices that belong
to the subject’s eyes, reducing the number of voxels to
approximately 26-30,000 voxels per TR. Both filters remove
voxels that are not part of the brain. An activity threshold of
400 and 35 vertical rows from the first 14 slices are generally
chosen for all subjects.

2) Normalization: Since fMRI data tends to have non-linear
non-homogeneous drifts, we introduce a normalization process
that has been verified to perform well in real-time; given a raw
value at voxel i and time t, ri,t, and a sliding window of length
w, we derive a new value for each raw value:

r′i,t = ri,t −median(ri,t−w+1, ..., ri,t) (1)

We have empirically established that a w of 40 TRs (80
seconds) is optimal for our datasets.

3) Feature selection: We use the IG algorithm, to automat-
ically converge on the most relevant voxels in the brain: those
with highest IG to the extent that the uncertainty (entropy)
regarding the class is diminished when the value of the voxel
is known [26].

Since the BOLD signal peaks only 8-12 seconds (TRs 4-
6) after the cue, we create TR-based datasets, containing all
the data samples from a chosen TR and apply the IG feature
selection to the them.

We introduced ‘IG peeking’: this method harnesses informa-
tion that is only available at a later TR and uses it in an earlier
TR in order to improve the classifier’s accuracy, i.e., using
influential voxels from a later TR with current TR raw-data
is more informative than using current TR voxels. In practice,
we use voxels that are identified by IG as influential, but we
use them 2 seconds earlier, i.e., we select all the data samples
from a certain TR after trials and use IG for feature selection
but apply these voxels to the data samples from an earlier TR.

We systematically explored three free parameters that are
available in our tool: i) choosing the TR to train on, ii) looking
at a higher TR’s IG indices for training at the current TR, i.e.
IG ’peeking’, and iii) choosing a number of top ranked IG
voxels. We found that training on a later TR, such as TR-4,
provided the highest accuracy. However, there is a trade-off:
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eventually we want the feedback to be provided as fast as
possible, and choosing a later TR might only allow accurate
classification if the time between feedbacks is long. Therefore,
we decided to create two datasets for the training process; the
first dataset is composed of all the data samples in TR3 of each
condition, and the second dataset from TR4. We used TR-4 for
feature selection, selecting the top 1024 voxels, these voxels
were applied on the second dataset (TR-3) for training and for
real-time classification.

4) Feature engineering: We have experimented with sev-
eral methods of feature engineering, which were tested off-
line using chronological run-based and compared with the
‘IG peeking’ method: i) for each condition we incrementally
concatenated data from several consecutive TRs (i.e., [TR1 &
TR2], [TR1 & TR2 & TR3], or from [TR1 & TR2 & TR3 &
TR4]), ii) we concatenated the difference between raw-values
of adjacent TRs (i.e., [TR3 & δ(TR3-TR2) & δ(TR2-TR1)]),
and iii) by spatial smoothing, using the mean of each prede-
fined cube region (i.e., 2x2x2) as a new voxel. Empirically,
in all the tests, there was no improvement in classification
accuracy and the optimal method was ‘IG peeking’.

5) Feature reduction: A systematic feature reduction
method can be used iteratively in the training stage to reduce
the amount of voxels by an order of a magnitude, i.e, to remove
redundant features, we reduce features to nearest power of
two until we see a drop in accuracy on the training set. The
benefits are: minimal or no loss in calculation time and similar
classification accuracy on the test set, as seen in Figure 3. In
terms of classification accuracy, using only 32 voxels at TR-4
are identical to using all voxels with IG weight above zero,
and nearly identical for TR-3. The total amount of voxels is
shared by the relevant brain regions, i.e., less voxels cover each
region. Therefore, it is advisable to consider both the brain
region’s coverage and the calculation time in every experiment.

Fig. 3. Test classification accuracy in TR-3 & TR-4, for three-classes, when
examining voxel amount, using a multi-class SVM classifier.

6) Classification algorithm: We used the dataset from same
subject to compare several state-of-the-art algorithms such as
XGboost [27] (by means of a Weka extension that wraps the
MLR R-package), random forest and multi-class [28] SVM
with polynomial (1st, 2nd and 3rd degrees) and RBF kernels,

using a hyper-parameter grid search. Chronological run-based
results, with feature selection, indicate that an SVM classifier
(polynomial kernel, exponent=1.0, C=1.0, Platt’s SMO version
of the SVM learning algorithm [29]) outperforms XGboost’s
accuracy by 9%. SVM also outperforms in training time, i.e.,
relative to SVM’s baseline training-time, XGboost’s and RF’s
were slower by 92% and 10.5%, respectively. We chose a
chronological run-based train-test split over cross-validation
due to the nature of the data, the fMRI recording depicts a
snapshot of the brain in time and the brain keeps changing
throughout the experiment. Therefore, we can’t use informa-
tion from the future by using cross-validation.

7) Real-time testing: During the real-time stage we classify
a data sample every TR (2 seconds) and use the same noise
reduction, eye filtering and normalization methods as in the
training stage, and select the same voxels based on the IG
filtering performed at model training. There is a small differ-
ence between the normalization process in the testing and the
training stages; in the testing stage the normalization algorithm
“waits” until it accumulates enough data samples to satisfy the
initial length of the sliding window, but in the training part
we have the data samples beforehand, thus the normalization
looks ahead instead of waiting. Finally, the data is passed into
the trained SVM model, and the classification result is then
transmitted to the external application. The ML-based method
we have presented here is simple and computationally efficient
for real-time fMRI BCI. The training process takes several
minutes and the classification process takes approximately 50
milliseconds.

Fig. 4. The fMRI BCI ML-based system architecture. The tool is able to
process both brain data arriving in real time from the fMRI scanner and pre-
recorded fMRI data. The tool uses user datagram protocol (UDP) to transfer
the subject’s classified intentions to external devices such as an avatar or a
humanoid robot.

III. RESULS: EMPIRICAL STUDIES

The system has been used in the context of several stud-
ies [4], [6], [18], [30], [31]. A typical study is divided into
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three parts. In the first part the subject is asked to follow
a predefined protocol and several runs are recorded for the
purpose of training a classifier. This is followed by the cue-
based BCI part of the study, which is similar to training with
the difference of providing the subject with feedback based
on the classified brain activity. In the last part, the subjects
perform a task, our tool classifies their intentions in real time,
and the classification result is transmitted to an external device,
as seen in Figure 4.

Our studies include motor execution (ME), in which the
subjects are asked to move their fingers and toes, motor im-
agery (MI), and a visual category task (VIS, described below).
The subject is provided with auditory cues in ME and MI,
and in VIS the cue is the appearance of the image itself. The
different classes are equally selected and triggered in a pseudo-
random order in order to avoid expectation and habituation.
In the ME study, the subject was expected to perform a
physical action (or keep the mental imagery in his mind in
the MI condition) during the trial until he heard a “rest” cue.
The classification and the feedback took place 10 seconds
after the voice command. We verified, by inspecting the brain
activation, that the classification is based only on motor related
areas, and is not based on auditory processing (e.g., responding
to the auditory cues) or the eyes (e.g., looking at the direction
that you expect the avatar to move to). Additionally, for
the amputated population, the ME paradigm is more suitable
than MI, due to their previous ability to fully control their
limbs. In the MI study, we have verified that subjects were
not moving their body during the experiment by constant
visual inspection (through a transparent window and two video
cameras). In addition, several subjects performed one session
with simultaneous electromyogram (EMG) recording in order
to validate that no muscle activity is involved in MI. In VIS
we had subjects watch 40 blocks from four visual categories:
faces, houses, tools, and a fixation screen that corresponds
with idle viewing. Each block was composed of a sequence
of images from one category, to elicit a strong neural response.
In each block there was always one image that did not match
the category, but the subject had no prior knowledge of this
statistic; this was done in order to assure the subject’s full
attention.

In order to establish a classification performance baseline,
we compared ML-based results in ME and MI to ROI-based
results obtained in a previous study [6]. The ROI method
was based on the Z-score formula for classification and
manually localizing brain areas [18], [6], [31]. In the ML-
based studies we use ML techniques to classify intentions of
ME, MI and VIS. In the primary method we used all the
IG voxels with a weight above 0; this is the best option for
using every influential voxel detected by IG and achieving the
highest possible accuracy, for example, cases where there is a
small amount of voxels. In the ’voxel reduction’ method we
reduced processing and classification time without sacrificing
classification accuracy. We suggest using the ’voxel reduction’
method when the amount of voxels is high, for example, cases
where there are multiple brain systems in use. This method

minimizes the informative voxels and obtains similar classifi-
cation results to the primary method. Our results were obtained
offline from recorded data; however, the tool simulated real-
time processing by sending a new brain-scan file every two
seconds.

A. Offline Results
The following results are based on a 3-class task, i.e., “left”,

“right” and “forward”, baseline of 33.3%. Figure 5 compares
average ME test accuracy, over all subjects between ML and
ROI. Classification accuracy coincides with the hemodynamic
response: in TRs 1 and 2 the accuracy is around chance level,
then it gradually increases with the best accuracy in TR 3
to TR 5-6 (6-12 seconds after the cue), and gradually drops
back to chance level. The results indicate that identifying the
most relevant features by using IG and classifying using SVM
is superior to the ROI method. In ME above 90% average
accuracy can be achieved even at TR 3 (6 seconds after a
cue), which is better than the 10 seconds delay in the ROI
method. By reducing the voxel count (i.e., raising the IG
threshold) to the smallest number of voxels until we see a
drop in accuracy on the training set, we can achieve similar
accuracy to that achieved by using all voxels with positive IG,
but with greatly reduced computation time. For exploration
purposes we have trained classifiers using only 16 voxels,
over all subjects. The average test classification accuracy was
surprisingly high: 83.3%, 94% and 98.6% in TRs 3,4 and 5,
respectively.

In MI (Figure 6), the average test accuracy is 90% in TR3
and 95% in TR4, which is higher than the maximum accuracy
obtained with the ROI method at TR5. In VIS (Figure 7),
multi-subject average results indicate an average test accuracy
of 78% in TR3, and an average accuracy of up to 87% can be
reached with a longer delay.

Fig. 5. A comparison of ME classification accuracy over five subjects,
between ML and ROI. The ML results were obtained by using (a) all voxels
with IG above 0 and (b) the smallest number of voxels until we see a drop in
accuracy on the training set. Error bars indicate the 95% confidence interval.

B. Online Results
In the online experiments a “rest” command for stopping

movement was introduced, i.e., a 4-class task (“left”, “right”,
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Fig. 6. A comparison of MI classification accuracy over three subjects,
between ML and ROI. The ML results were obtained by using (a) all voxels
with IG above 0 and (b) the smallest number of voxels until we see a drop in
accuracy on the training set. Error bars indicate the 95% confidence interval.

Fig. 7. ML results obtained for VIS using (a) all voxels with IG above 0
and (b) the smallest number of voxels until we see a drop in accuracy on the
training set. Error bars indicate the 95% confidence interval.

“forward”, and “rest”). The real-time ME experiments were
conducted on several days, i.e., for every subject we train a
classifier once, and continue to use it in every subsequent trial,
over multiple days. The ME and MI classifiers were trained
using 4 and 5-6 training runs, respectively; and were tested
on a single run, averaged over all subjects, to determine the
classifier’s accuracy on real-time unseen data.

1) Cue-Based BCI: Figure 8 shows average classification of
online accuracy over all subjects and indicates that the optimal
TR in terms of accuracy is 6 seconds after a cue. The optimal
classification TRs in MI are TR5 (S7, 80%) and TR3 (S8,
55%).

2) Free-Choice BCI: In the online free-choice experiment,
each subject underwent between 6-15 and 8-10 free choice
runs and was instructed to control an avatar and follow a
predefined path while collecting as many discs as possible
(Figure 9). In this stage a “rest” command for stopping
movement was introduced, i.e., a 4-class task (“left”, “right”,
“forward”, and “rest”). For every subject we train a classifier

.

Fig. 8. Average ME classification accuracy for six subjects from a separate run
from the classifier’s training session. Error bars indicate the 95% confidence
interval.

Fig. 9. The subject needs to control an avatar, navigating along the path and
collecting as many red discs as possible. To successfully collect a disc, the
avatar must touch it and then the disc changes to green.

once, and continue to use it in every subsequent trial, over
multiple days. Classifiers cannot be used interchangeably
between subjects due to anatomical differences. We provided
feedback to the subject every 2 seconds and between feedback
events the avatar keeps performing the last instruction.

The optimal time for completing the free-choice task was
determined by a pilot study using a joystick. The task was
repeated several times until it was completed without any
mistakes and without using the ‘rest’ class to stop the avatar
and was 35 seconds. In each BCI trial i, performance was
calculated by dividing the trial time ti by the amount of
collected discs di. The ME performance of the majority of
trials was near optimal. MI performance was comparatively
poor; this is despite the reasonable MI offline classification
accuracies; Figure 10 shows two trajectories. The best time
achieved by a subject in ME and MI was 49.5 seconds and 99
seconds, i.e., an overhead of 14.5 seconds and 49.5 seconds,
respectively, beyond joystick performance.
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.

Fig. 10. A 2-Dimensional birds-eye view of optimal ME (right) and MI (left)
trial performed by two subjects, the feedback was given every 2 seconds. The
black spot indicates the starting point. The subjects needed to guide the avatar
toward the end of the path by picking up all the red disc throughout.

IV. SCALABILITY

Our method has the advantage of being flexible. We expect
it to scale to a multiple number of classes, using a wide range
of mental paradigms. In order to validate our hypothesis, we
created a 7-class training set, which is a concatenation of both
ME and VIS conditions. The training set was composed of
data recorded from three subjects who participated in both
experiments. The data from the ME and VIS experiments was
recorded on different days and was verified for alignment by
manually inspecting the brain position and rotation of each
scan in both ME and VIS; the ME data contains 4 classes
and the VIS data contains 3 classes. A classifier was trained
on 4 runs, using 2048 voxels selected by IG from the entire
brain, which is equivalent to the sum of voxels used in the
testing of both datasets separately. Testing was done on a
single separated trial.

The highest classification accuracy for ME was 98.3% (4-
classes, 25% baseline) and for VIS was 78.3% (3 classes,
33% baseline) at TR4. Our results indicated a 7-class accuracy
at TR4 of 80.95%, as compared with the average calculated
accuracy for both datasets – 88.73%, and chance accuracy of
14.2%. Figure 11 shows that the accuracy obtained from the
7-class data is very close to the accuracy calculated from both
problems in TR3 and TR4, and within the confidence interval,
empirically demonstrating that our tool and in turn our method
can be used to create classifiers with more than 4 conditions,
to classify concatenated datasets that were not recorded on the
same day, to use one classifier instead of using two different
classifiers, and with a minimal loss of classification accuracy.

V. BRAIN ANALYSIS

Our method uses raw voxel values that cannot be compared
by value to TBV’s general linear model-based (GLM) voxels.
However, informative and contrast-based voxels can be com-
pared anatomically. We inspected 6 subjects that participated
in cue-based MI experiments, our inspection suggests pre-
motor cortex activation in MI whereas ME was mostly based
on the specific body representations in primary motor cortex in

.

Fig. 11. A comparison of accuracy results for a 7-class dataset against a
calculated average accuracy from ME and VIS. Error bars indicate the 95%
confidence interval.

all subjects. Another interesting and rather unexpected finding
was that for three subjects the MI classifier identified visual
cortex voxels as informative. These voxels and are pointed by
the white arrows in Figure 12 were selected based on MI cue-
based task, i.e., the subjects were instructed by an auditory
command to do imagine an action while the avatar was idle,
the selected voxels are the direct result of MI and not from
a visual stimuli. This may suggest the engagement of visual
imagery despite the purely motor instructions.

The validity of our MVPA method is suggested by the fact
that, overall, the information gain algorithm largely selects
informative voxels that are similar to those that are detected
in standard GLM analysis as pointed by the blue arrows in
Figure 12. The increased accuracy suggests that information
gain is more sensitive than GLM.

.

Fig. 12. A subset of corresponding slices from subject S7. The left column
shows the GLM contrast (right, left, forward) > baseline (thresholds:
t=4.6 for ME and t=3.2 for MI), and the right column shows the 1024 voxels
with highest information gain selected by our algorithm. The top row shows
imagery and the bottom row shows motor execution.
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VI. DISCUSSION

In this paper we demonstrated the advantage of using our
tool for real-time fMRI BCI. We showed how a multivariate
approach, combined with superior spatial resolution, achieves
high accuracy in a series of single-trial classification and BCI
studies, based on several brain networks. Our results indicate
that our tool is robust and efficient in classification time,
allowing for real-time fMRI experiments. Our tool can classify
covert intentions that do not have specific anatomical ROIs,
such as “rest”, can reduce the amount data by converging only
on task related voxels. The classifiers created by our tool can
be used successfully, without modification, by our subjects
even months later.

We showed that real-time fMRI BCI can be used with a two
second delay between commands in a free choice task, and by
allowing feedback that is synced with the minimal scan time,
subjects are able to control an avatar without being limited
to the inherent delay of the BOLD signal. After showing that
fMRI can be used as a relatively fast BCI, additional mental
tasks and brain activation patterns can be explored for BCI.
Finally, using the tool suggested here our team and others may
explore other novel BCI paradigms.
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