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Abstract
In traditional biofeedback, the participant is required to learn to regulate his or her
physiological state, based on continuous feedback about this state. Here we sug-
gest a complimentary scheme, whereby the machine has to learn how to modulate
the physiological state of the participant, by ongoing selection of the most effec-
tive stimuli sequence. Since the physiological state of the participant is dynamic
and might also adapt to the attempts at being modulated, we suggest a framework
based on on-line reinforcement learning (RL); in this framework the RL is respon-
sible for online adaptive control. Specifically, we present the first steps towards
developing an intelligent system that learns to elicit high (or low) levels of arousal
in human participants in a virtual reality (VR) setting.

The combined dynamics of an RL agent and human physiology is complex.
In order to study this dynamic systematically we selected a simple physiological
signal – skin conductance – of participants experiencing fear inducing stimuli with
multiple repetitions. Based on the data from this experiment, as well as findings
reported in the psychophysiological literature, we developed a simulator of the
physiological responses to the VR stimuli. This simulator was then used to train
a machine learning system, whose goal is to learn optimal policies for inducing
high (or low) levels of physiological arousal.

Our main challenges are learning to modulate a noisy and non stationary sig-
nal, and we specifically model both habituation – the tendency of the response to
decline after repeated exposure to identical stimuli – as well as dishabituation – the
tendency of the response to rebound back after some duration in which a stimulus
does not appear. Noise and habituation were framed as simple n-arm bandit prob-
lems, and can be solved by a state-less algorithm. Experiments were conducted
with three known algorithms: ε−greedy, softmax and adaptive pursuit, with sev-
eral parameters. For addressing the more complex challenge of dishabituation we
show that a introducing states results in superior performance as compared to the
state–less algorithms.
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1 Introduction
The long-term goal of this research is to develop a method, based on online statis-
tical machine learning, whereby the system learns how to systematically regulate
the physiology of human participants through a virtual reality (VR) environment.
This thesis is a first step in this ambitious direction.

The research was carried out in a VR environment due to its ability to make it
possible for people to experience a simulated environment as if they are physically
present inside it, while at the same time it provides a safe and controlled laboratory
environment.

This research combines three fields: virtual reality, affective computing and re-
inforcement learning. The following subsections elaborate on affective computing
and reinforcement learning. For a recent review of VR research and applications
see Slater and Sanchez-Vives (2016).

1.1 Affective Computing
Affective computing is an interdisciplinary field of study, focused on the devel-
opment of systems that can recognize, interpret, and express human affect. The
term was coined by Rosalind Picard as computing that relates to, arises from,
or influences emotions (Picard, 1995). Systems that can both be influenced by
and influence users corporeally exhibit a quality named an affective loop (Höök,
2009). Affective computing systems aim to create an affective-loop between the
system and the end user, by detecting the end-user’s state and selecting an appro-
priate response. The response may or may not influence the end user’s affective
state (for example, it may simply represent it).

Much of the research in affective computing is aimed at using machine learn-
ing to decode an affective state from neurophysioloigical signals. The topic of this
thesis is different, and our goal is to develop an active system that modulates the
physiological signal; we are not concerned here with the reported subjective state
resulting from this induction. We measure and manipulate physiological arousal
using skin conductance (SC) (sometimes referred to as electrodemal activity —
EDA). SC measurement is the use of the human body’s continuous variation in
the electrical characteristics of the skin, due to fluctuating levels of moisture, as
an indicator of a person’s psychological or physiological arousal. This response is
associated to the sympathetic nervous system, responsible for our “fight or flight”
response (Critchley, 2002; Benedek and Kaernbach, 2010)
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1.2 Reinforcement Learning
RL (Sutton and Barto, 1998) is a sub-area of machine learning in which a goal
driven agent interacts with a dynamic environment through trial and error. The
agent’s goal is achieved through a series of actions performed sequentially. After
an action has been performed, the agent’s sensors enable it to observe the envi-
ronment. The observation is presented to the agent as a pair of state and reward
calculated by the environment interpreter.

The RL problem faced by the agent can be formulated as a Markov decision
process (Kaelbling et al., 1996). The reward is a scalar representing the immediate
desirability of an action result. The state is derived from the information about
the environment that is available to the agent. In RL we are interested in the
long run desirability of taking an action in the current state, represented as the
< state,action > pair value. It can be calculated as a function of the maximum
reward units that an agent can expect to accumulate from the current state. In
order to understand what reward units an agent can expect, the agent first decides
on a policy, a mapping from environment states to desired actions.

There is a trade-off between the need to obtain new knowledge and the need
to use previously obtained knowledge known as the exploration – exploitation
dilemma. The most generic RL problems, where this dilemma has to be consid-
ered, are single state problems called multi-armed bandit problem (Sutton and
Barto, 1998, Section I.2). A realistic and challenging variant of multi-armed ban-
dit problems is a non-stationary bandit problem where the actions’ reward value
can change over time. In this set of problems the importance of the exploration
is not diminished over time. Multi-arm bandit problems with k actions are also
referred to as k-arm bandit problems and can be solved by a state-less algorithm,
as follows.

Algorithm 1 is a general algorithm for a stationary multi-armed bandit prob-
lem where at is the action taken at time t, N(at) is the number of times action a was
chosen, including the current time t, Q(at) is the value of action at under the agent
policy, rt+1 the immediate reward of performing at , β is 1

N(a) and T is the last time
the agent take an action. The same algorithm can be used for non-stationary ban-
dit problem with one change – β is a small positive constant, in order to obtain a
fixed exploration and exploitation ratio. In this algorithm the probability of each
possible action to be the current best action is typically estimated by several meth-
ods (Koulouriotis and Xanthopoulos, 2008). Three known methods are ε−greedy
(Algorithm 2), so f tmax (Algorithm 3) and adaptive pursuit (Algorithm 4).
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In Algorithm 2, ε < 1 is a very small positive constant. In Algorithm 3, τ is a
positive parameter called temperature. The higher the temperature is, the greater
the probability for exploration is. In Algorithm 4, Pmin < 1 is a very small positive
parameter, and prior to running the code in Algorithm 1, P is initialized to 1

N(a) .

Algorithm 1 k-armed bandit

1: Initialize Q(a) f or all actions with 0
2: for t in 1..T do
3: Pt ← BestActionProbabilityEstimations(Q)
4: randomNum chosen uni f ormly at random f rom the interval (0..1)
5: temp← 0
6: i← 0
7: while temp < randomNum do
8: i← i+1
9: temp← temp+Pt [i]

10: end while
11: at ← i
12: Q(at)← Q(at)+β (rt+1−Q(at))
13: end for

Algorithm 2 ε−greedy
1: procedure BestActionProbabilityEstimations(Q)
2: for a in 1..k do
3: P[bestAction = a] = ε

k
4: end for
5: ag = argmaxaQ
6: P[bestAction = ag]+ = (1− ε)
7: return P
8: end procedure
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Algorithm 3 so f tmax
1: procedure BestActionProbabilityEstimations(Q)
2: for a in 1..k do
3: P[bestAction = a] = eQ(a)/τ

∑
n
i=1 eQ(ai)/τ

4: end for
5: return P
6: end procedure

Algorithm 4 AdaptivePursuit
1: procedure BestActionProbabilityEstimations(Q)
2: for a in 1..k do
3: P[bestAction = a]+ = α(Pmin−P[bestAction = a])
4: end for
5: ag = argmaxaQ
6: P[bestAction = ag]+ = α(1− kPmin)
7: return P
8: end procedure

A well known learning algorithm for RL problems that includes states is
SARSA (Sutton and Barto, 1998, Section I.6). Let st be the state at time t, at
the action taken at time t, rt+1 the immediate reward of performing at at state st ,
Q(at ,st) the value of performing at at state st and st+1 the new state resulting from
this action. The algorithm selects at+1, the best action to take at time t+1 accord-
ing to the policy driven from Q. Only then it updates Q(at ,st) with the following
update rule (1), where α is the learning rate and γ is the discount factor.

Q(at ,st)← Q(at ,st)+α[rt+1 + γ ·Q(at+1,st+1)−Q(at ,st)] (1)

Because the SARSA agent updates the policy based on actions taken, this is
known as an on–policy learning algorithm.

When the agent environment interaction breaks naturally into subsequences,
we call each subsequence an episode.

Let S be the group of all possible states and A(s) be the group of all available
actions at state s. Algorithm 5 is the SARSA general algorithm. The action selec-
tion policy is derived from Q using one of the three methods: ε−greedy, so f tmax
or adaptive pursuit.
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Algorithm 5 SARSA

1: Initialize Q(s,a) ∀s ∈ S,a ∈ A(s), arbitrarily
2: repeat f or each episode
3: Initialize s1
4: Choose a1 f rom A(s) using policy derived f rom Q
5: for t in 1..T do
6: Take action at and observe rt+1, st+1
7: Choose at+1 f rom A(st+1) using policy derived f rom Q
8: Q(st ,at)← Q(st ,at)+α[rt+1 + γ ·Q(st+1,at+1)−Q(st ,at)]
9: end for

10: until no more episodes

We will use the reinforcement learning (RL) framework as follows: the RL
agent is the VR system, the actions taken by the agent are the different stimuli,
and the reward is derived from the participant’s physiological signal. The goal
of the RL algorithm is to learn an optimal policy that would result in driving the
physiological signal in a specific direction.

Machine learning in general, and RL specifically, require large amounts of
training data. Our methodology in addressing this is based on a simulator of hu-
man physiology. The simulator will attempt to capture the main characteristics of
the simulated signal. We will begin by using unrealistic models for simplification.
Gradually, we will introduce dynamic properties of the signal, approximating the
real dynamics of psycho-physiological signals.

1.3 Previous Work
While each of the fields of VR, affective computing (specifically using SC), and
RL have been extensively researched, to the extent of our knowledge a combi-
nation of all three, i.e. a system capable of real time, RL agent based affective–
loop interaction with a human participant based on their physiological readings,
has never been studied. In Marı́n-Morales et al. (2018), a virtual environment
was used for emotion elicitation and classification, as opposed to previous stud-
ies using non-immersive stimuli. Four alternative virtual rooms were designed to
elicit four possible arousal–valence combinations, and the electroencephalogra-
phy (EEG) and electrocardiography (ECG) of 60 participants was recorded and
analyzed. The results show a 75.00% accuracy recognition rate along the arousal
dimension and 71.21% along the valence dimension. In Wu et al. (2010), a virtual
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environment was used to create three scenarios of increasing arousal levels. The
participants were driving through low threat (scenario I) and high-threat (scenario
2) zones, and were tasked with naming colors appearing randomly on the screen.
The third scenario was similar to the second, except Stroop tests were used in-
stead of color naming. The participants were tasked to name the color as fast as
they could and their response time was measured. Psychophysiological measures,
including SC level, were continuously recorded. The results show that for most
participants, the optimal arousal levels were elicited in scenario 2. Further, re-
sults suggest high classification rates using psychophysiological responses. This
research reflects progress toward the implementation of a closed-loop affective
computing system. In Tijs et al. (2008), an emotionally adaptive game was cre-
ated to investigate the relations between game mechanics, players’ emotional state
and their emotion data. Through manipulation of game speed, the study compared
self reported data in terms of valence, arousal and boredom-frustration-enjoyment
to (mainly) physiology-based data termed “emotional data”. A correlation was
found between self-reported and emotional data, and seven emotion–data features
were found to distinguish between a boring, frustrating and enjoying game mode.
Although this study did not use RL, it was proposed as the next step.

In Liu et al. (2009), two dynamic difficulty adjustment (DDA) approaches
for computer games were compared, with the goal of enhancing user experience
and reducing anxiety. The first approach was adjusted according to player per-
formance only, and the second approach was adjusting DDA solely according
to real–time affect measurements, including SC (based on player–specific, previ-
ously constructed models). The results show improved performance and reduced
perceived anxiety–level for the majority of the participants, during the affect-
based DDA session, compared to the performance-based session.

In Rovira and Slater (2017), RL was used to make participants move to a
specific location in an immersive virtual environment and stay there as long as
possible, without them being aware of the RL goal. This was achieved by reward-
ing the RL agent according to the position of the participants. The experiment
was held in a VR game environment in which the participants are told they should
avoid spacecraft hits. The RL agent then decides where the spacecraft attacks.
The results show that the RL agent generally learns to guide participants towards
the goal.

The studies above demonstrate growing effort to recognize valence and op-
timal arousal levels for human participants, and how a VR environment can be
utilized for such effort. One study has combined VR and RL to create a real-
time adaptive agent. However, none of the above studied a framework combining
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on-line physiological signals, an immersive VR environment, and a RL agent ca-
pable of fast analysis and adaptation to stimuli over a prolonged period of time,
including habituation.

1.4 Contribution
An earlier version of this thesis appeared as a paper: Keren-Or Berkers, Jonathan
Giron and Friedman Doron, Algorithmic Induction of Physiological State: First
Steps, in the peer reviewed workshop on Lifelong Learning: A Reinforcement
Learning Approach (LLARLA) as part of the IJCAI/ICML conference in July
2018.

2 Methods

2.1 The VR experiment
2.1.1 Experimental procedure

The VR experimental scenario starts in a big empty gloomy room (Figure 1). A
set of stimuli, related to known human fears, are presented in order to elicit emo-
tional arousal in the participants. The stimuli are presented in a pseudo random
order, such that every stimulus is repeated 10 times. Each stimulus duration is 10
seconds, and there is a 10 second inter-stimulus interval. There are three different
stimuli: spiders (Sp), snakes (Sn), claustrophobia (Cl).

The SC of the participant is recorded throughout the experiment. The par-
ticipants are instructed to continuously update a virtual scale according to their
emotional state. This is done in order to collect a continuous subjective reporting
of their level of arousal (this analysis is out of the scope of this thesis), and also
in order to keep the participant engaged during the experiment. If the participants
feel the stimulus is too intense for them, they can stop it at any time by pushing
the trigger button.
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Figure 1: A screenshot of the virtual room where the stimuli appear. The partici-
pant indicates their level of stress with the VR controller and this is displayed in
the scale.

(a) Spiders (Sp) (b) Snakes (Sn) (c) Claustrophobia (Cl)

Figure 2: Screenshots of the aversive stimuli that were presented to the participant
in the VR environment.

2.1.2 Participants

The experiment was conducted on 21 participants in campus (12 male, mean age
27). Basic demographic details from participants, including age, gender, and ex-
perience in VR was collected. The experiment was approved by the institutional
ethical review board.

2.1.3 The VR Framework

The VR environment was developed in Unity3D (Unity Technologies, USA) using
the SteamVR SDK (Valve Corporation, USA). The VR headset used in the exper-
iment is the VIVE VR headset (HTC, USA) including earbuds and one wireless
controller (Figure 3). The experimental protocol was implemented in Matlab for
this project, and triggers were sent to the Unity software using the user datagram
protocol (UDP). SC was recorded using the g.USBamp neurophysiological am-
plifier (gTec, Austria) and gTec SC sensors.
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Figure 3: An illustration of a participant during the VR experiment.

2.2 The RL Simulator experiments
A wide range of experiments were carried out in order to refine the system and test
it with increasingly more complex signal properties. In this thesis, four main ex-
periments are described; each experiment description contains the physiological
property it attempts to address, the algorithmic approach required, and the experi-
mental results. In the studies described below, the agent’s goal is to maximize the
physiological arousal obtained using a fixed number of actions, i.e., maximizing
the accumulated reward. The immediate reward is derived from the change in SC.
States can be used to model additional information, such as memory about current
and previous stimuli and physiological values. In our case, the RL agent’s actions
are performed in the VR environment and the reward is computed from the partic-
ipant’s physiological state by the simulator (Figure 4). The RL algorithms were
implemented in Matlab for this project.
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Figure 4: The RL framework: the algorithm is trained with a simulator (left), and
after training the system is expected to attempt to modulate the physiological state
of a human participant (right) (this is beyond the scope of this thesis).

2.2.1 Experiment 1: From experimental data to simulator

In the first stage we assume a simulated participant whereby the reward for each
of the actions – spiders (Sp), snakes (Sn), and claustrophobia (Cl) – is sampled
from a normal distribution. The distribution of rewards for each action has been
determined by the VR experiment data analysis as follows. For a given participant,
each stimulus (action) was presented 10 times. The SC signal is downsampled
from 256Hz to 32Hz, and for each event (stimulus presentation) we perform local
normalization by:

sc[0,15] = SC[0,15]−mean(SC[−5,0]) (2)

where sc[t1, t2] is the preprocessed SC level in the temporal window between
t1 and t2 seconds. From this preprocessed SC signal a reward is defined for each
appearance of each stimulus by the following formula:

Ri, j = max(sci, j[7,15])−mean(sci, j[0,7]) (3)

where i is the category of stimulus (i.e., snakes, spiders, or claustrophobia) and
j is the trial number out of 10 repetitions. The rationale of Equation 3 is to take the
reward to be proportional to the magnitude of the peak of the SC after the event
normalized by the mean SC during the rest period just before the event. Based
on the 10 repetitions we obtain a random variable Ri per participant. Based on
this analysis the simulator samples rewards for action i from a normal distribution
with the mean and standard variation of Ri.
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Figure 5 displays the average response per category of all participants. There
are large differences among the participants, and for most participants there are
clear differential responses to the different categories, i.e., for a given participant
there are typically one or two categories for which the response is strong and one
or more categories for which the response is very low. Due to the substantial
differences mentioned above, we decided to initialize the simulator based on data
from a single participant. This approach aligns with our vision to create a system
that can observe and learn individual differences in stimuli response rates. These
differences may be quite significant. For example, individuals with anxiety show
less physiological habituation (Raskin, 1975).

Figure 6 displays the SC signal of a specific participant, per category. Figure 7
displays the rewards calculated from the preprocessed signal of the same partici-
pant, the SC responses to snakes and claustrophobia were higher than the response
to spiders, but a 1-way ANOVA statistical test indicates that the differences among
the categories are not significant (p = 0.15, F=2.03).

Figure 5: Event related SC response of all 21 participants to four aversive cat-
egories. In addition to the three categories discussed in this thesis, this group of
participants also experienced a VR simulated fear of heights experience. The plots
show the 95% confidence interval, indicating that for most participants there is a
clear within-participant difference among the categories, which can be learned by
the system.
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Figure 6: Event related SC response to three categories, of an example participant.
Error bars indicate the variance.

The goal of the RL algorithm is to maximize the accumulated reward over
time, and in this simple initial experiment this can be framed as a simple 3-arm
bandit problem, which can be solved by the state-less Algorithm 1 with β =

1
N(a) . Three methods for estimating the best action probabilities were compared;
adaptive pursuit (see Algorithm 4), so f tmax (see Algorithm 3) and ε − greedy
(see Algorithm 2).

2.2.2 Experiment 2: Coping with habituation

In experiment 1 we have assumed that the reward per category is stationary. How-
ever, a well known property of most neurophysiological signals is habituation: a
decay of response and a decrease in the magnitude of event related responses with
repetitions of the same stimulus (e.g. Barry et al., 1993).
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Figure 7: Rewards per category, sample participant: for each category we display
the resulting reward over time, based on the category’s appearance in the pseudo
random presentation order. Left: snakes, middle: claustrophobia, and right: spi-
ders.

Such a trend is also evident in the VR experiment data; in Figure 7 we can
see this trend most clearly for the spiders category. The other categories seem
to show some habituation but indicate that other sources of temporal variability
are present. The habituation trend of each action was modeled to fit the equation
f (x) = eb · f (x−1) using the matlab curve fitting library with one difference – the
real participant trend was stretched from 10 stimulus repeats to 50 repeats. From
this analysis we can extract for each action a∈ {Sn,Cl,Sp} an initial reward value
Ca and decrease factor ηa as follows.

CSn = 9.0140 (4)

ηSn = 0.9712 (5)

CCl = 7.1954 (6)

ηCl = 0.9140 (7)

CSp = 7.0967 (8)

ηSp = 0.7804 (9)
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Figure 8: Reward functions extracted from the data of a real participant.

Figure 8, displays the reward functions per category for this example partici-
pant. We modeled this behaviour in our simulator as follows. For a given action
a we denote the number of steps since the last time the action was taken by δa. If
the action was never taken δa = ∞ . The reward r(t) for a specific action at time t
is:

r(t,a) =

{
Ca, if δa = ∞

r(t−δa,a) ·ηa, otherwise

In this experiment the reward for performing an action ai is not affected by any
other action a j 6=i, but only by δa. The optimal policy is thus to start by taking the
action with the highest reward, but then to switch to the next most beneficial action
when the reward of the first action goes below the initial reward for the second
action. Since this implies that the optimal policy can be based on maximizing
immediate reward, in this experiment there is no need for the RL to include states.

The goal of the RL algorithm is to maximize the accumulated reward over
time, but in contrast to the first experiment the most desirable action changes over
time. This can be framed as a non-stationary 3-arm bandit problem, which can be
solved by the state-less Algorithm 1 with a small constant β . In this thesis β = 0.3
was used. The reward value of an action can be reduced dramatically after a small
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amount of actions. The declining reward of an action is independent of the other
actions that are being performed. Therefore, there is an optimal set of actions for
the task, and as long as the size of the set is constant and known, the action order
is not important. The habituation problem was handled as an episodic experiment
with 20 episodes; each episode was defined as 50 steps (50 actions taken) and each
episode started as a new trial as if there was no habituation but with an updated
Q-table.

2.2.3 Experiment 3: Leveraging dishabituation

Next, we address the issue of dishabituation (e.g. Siddle, 1985): this phenomenon
is complimentary to habituation, and refers to an observed fast recovery of a stim-
ulus response, which was previously diminished by habituation. Dishabituation
may be observed when the stimulus is applied after a duration of non-exposure to
the stimulus. We model this behaviour in our simulator as follows. For a given
action a we denote the number of steps since the last time the action was taken
by δa, the initial reward value by Ca, the number of presentation steps after which
dishabituation occurs by Ωa, and the decrease factor by ηa. Then the reward r(t,a)
for a specific action at time t is:

r(t,a) =

{
Ca, if δa ≥Ωa

r(t−δa,a) ·ηa, otherwise

The challenge is for the algorithm to learn not to take an action for enough
steps, until dishabituation takes place. Unlike experiment 2, the reward reduction
of an action depends on the other actions performed. As long as no other action
was performed the action reward is reduced, but if other action/s have been per-
formed for at least Ω steps the reward increases back to its initial value. Therefore,
an additional state is needed, in order to represent the current dependency of an
action reward on other actions that are being performed. The state representation
we have used is a captured memory of the most recently presented stimuli (actions
taken), and the algorithm selected was SARSA (Algorithm 5). For simplification
of the problem it was assumed that ∀a,Ωa = 6. Given the habituation factor Ω we
need |A|Ω states, where |A| is the number of actions. This representation was easy
to implement and it performs better, but it is obviously not scalable because the
number of states is exponential in Ω; future work will require more sophisticated
mechanisms that can handle the general problem for arbitrary Ω. For comparison
of the state-less approach used in experiment 2, the ε − greedy with ε = 0.1 and
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adaptive pursuit method with Pmin = 0.1, were also evaluated.
The SARSA algorithm is significantly slower to execute. Therefore, the state-

less approach methods were executed and evaluated and only then the best method
for this challenge was used as the method to derive a policy from Q in the SARSA
algorithm.

In contrast to experiment 2 where the optimal policy was to choose the action
with the current best reward, here this policy can yield the worst result. For exam-
ple, in the case where all initial rewards and decrease factors are equal the above
policy would have changed the action taken every step and therefore, would not
reach dishabituation. The optimal policy in this case is unknown because the best
policy depends on unknown factors such as the initial rewards and decrease fac-
tors. In this thesis an ad hoc policy with high accumulated rewards is suggested.
In the ad hoc policy, unlike in the RL algorithm, the Ω is known and is being used
in order to find the policy. The ad hoc policy algorithm is given in Algorithm 6.

The dishabituation problem was modeled as an episodic experiment with 100
episodes; each episode was defined as 50 steps (50 actions taken) and each episode
started as a new trial as if δa for all actions was increased to the maximum (no
habitation), but with an updated Q-table.
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Algorithm 6 Ad hoc policy
1: acurrent ← a1
2: await ← a1
3: δawait ← 1
4: k← number o f actions
5: anext ← (acurrent (mod k))+1
6: policy(1)← acurrent
7: for t in 2..T do
8: if δawait > Ω then
9: await ← acurrent

10: acurrent ← anext
11: δawait ← 1
12: anext ← (acurrent (mod k)))+1
13: else
14: if δawait 6= anext then
15: acurrent ← anext
16: anext ← (acurrent (mod k)))+1
17: end if
18: end if
19: policy(t)← acurrent
20: end for
21: return P

2.2.4 Experiment 4: Individual differences in dishabituation functions

Figure 5 illustrates that different individuals physiological reaction to each stimu-
lus differ in value and in decrease factor. It is most likely that people differ in the
number of presentation steps after which dishabituation occurs, but for simplifica-
tion of this experiment we assume this factor is identical for all. This experiment
is an extension of the previous one, differing only by the initial reward values
and decrease factors given to an action in the beginning of a run. In contrast to
experiment 3 these values are not based on real participant data but are selected
randomly for each run. It is important in order to make sure our results are not
specific for one subject initial reward values and decrease factor.
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3 Results
In all of the experiments, the results reported are always based on the mean results
of 100 runs of the experiment.

3.1 Experiment 1: From experimental data to simulator
Figure 9 presents %−optimal, that is the accumulated reward achieved by the an
agent divided by the accumulated reward achieved by always choosing the optimal
action (Sn). In this experiment we see that the algorithm can quickly converge on
the best action, and the adaptive pursuit method with low Pmin (0.001) is better
than the other methods. Second best is the ε−greedy method with ε = 0.1.

Figure 9: Learning curve of several algorithms in the first experiment. In this case
the optimal policy is simply to repeat the action with maximum reward (Sn). The
y axis denotes the % of the runs in which the optimal action was selected.

3.2 Experiment 2: Coping with habituation
Figure 10 presents the mean accumulated reward of a run by episodes. The
ε−greedy method, so f tmax method and adaptive pursuit method with Pmin =
0.1 accumulated reward value increased from the first episode towards the last
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episode, while the method accumulated reward decreased from the first episode
towards the last episode.

The results indicate that ε − greedy with ε = 0.1 and the adaptive pursuit
method with Pmin = 0.1 rapidly converge to near optimal results.

In this experiment there is an optimal set of actions to take in order receive the
optimal accumulated reward. This set of action learned by the optimal policy is:
in 36 steps choose Sn, in 10 steps choose Cl and in 4 steps choose Sp. In Figure
11 we see the mean number of times an action was performed in an episode for
random, optimal and the first and last episode for the two best methods. This gives
us an idea of the set of actions each agent learned to take. We can see that after
the first episode the set of actions performed by the adaptive pursuit agent with
Pmin = 0.1 is the most similar to the optimal agent. As for the last episode the set
of actions performed by the ε−greedy with ε = 0.1 agent is almost the same as
that of the optimal agent. The information from the figure indicates that the set of
actions performed by the ε−greedy with ε = 0.1 agent is the most similar to the
optimal agent given enough episodes.

Combining the results, it seems the ε − greedy with ε = 0.1 agent and the
adaptive pursuit agent with Pmin = 0.1 can both cope with habituation over a
series of episodes, better than all other agents suggested.

Figure 10: The learning curve (the mean accumulated reward of a run by episodes)
obtained with the reward function based on real participant data, by the different
algorithms.
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Figure 11: The mean number of steps that each action was selected in an episode.
The optimal set of actions is the one of the optimal agent.

3.3 Experiment 3: Leveraging dishabituation
Figure 12 presents the mean accumulated reward of a run by episodes. The
ε − greedy algorithm with ε = 0.1 rapidly converges to a maximum value and
provides better results than the random policy and the adaptive pursuit algo-
rithm. Therefore, we have chosen the ε − greedy algorithm for the method used
for deriving a policy from Q in the SARSA algorithm. The SARSA agent needs
more episodes in order to learn a better policy than random, but from approxi-
mately episode 25 obtains a better accumulated reward than the ε−greedy agent.
Figure 13 displays the mean of the ongoing accumulated reward during a session
with dishabituation, at the last episode. The ε − greedy with ε = 0.1 agent per-
forms better than the random policy agent only from approximately step 30. The
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SARSA agent accumulated rewards, in contrast, are more similar to the ad hoc
policy results than to the random policy results.

The results indicate that the SARSA agent learns better than the random agent
and than the ε − greedy agent when given enough episodes. Additionally, it in-
dicates that the ε − greedy agent with ε = 0.1 rapidly converges to a maximum
value and obtains better results than the adaptive pursuit algorithm and the ran-
dom policy, but not by much.

Figure 12: The learning curve obtained with the reward function with dishabitua-
tion based on real participant data.
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Figure 13: The mean of the ongoing accumulated reward during a session with
dishabituation, at the last episode.

3.4 Experiment 4: Individual differences in dishabituation func-
tions

Figure 14 presents the mean accumulated reward of a run by episodes. Figure 15
displays the mean of the ongoing accumulated reward during a session with disha-
bituation, at the last episode.

The results indicate that both RL agents learn independently to the initial re-
ward values and decrease factors of the reward functions. Moreover, the SARSA
agent learns better than the random agent and the ε − greedy agent when given
enough episodes, and the ε − greedy agent with ε = 0.1 rapidly converges to
a maximum value and obtains better results than the random policy, but not by
much.
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Figure 14: The learning curve obtained with the reward function with dishabitua-
tion.

Figure 15: Ongoing reward during a session with dishabituation, after 100
episodes.
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4 Discussion and Future Work
This thesis described an overall framework for physiological state induction and
illustrated how physiological data from empirical studies can be captured by a
simulator for RL training. A simplified example with three VR stimuli was ex-
plored, and it was shown how RL algorithms can be used to find near optimal
policies, coping with some of the challenging properties of physiological signals,
such as noise, habituation, and dishabituation.

Our results indicate that although the adaptive pursuit approach was the best
algorithm to deal with the noise property, this was not the case with habitation and
dishabitation. When dealing with habitation there was a small advantage for an
ε−greedy method when given enough episodes. When adding the non-stationary
problem of selecting actions to maximize physiological arousal – given both ha-
bituation and dishabituation – the addition of different states gave the agent a
clear advantage over the state-less algorithms. Our results indicate that a simple
SARSA implementation can solve this problem. Moreover, this is still the case
even if we introduce individual differences in the initial reward values and de-
crease factors given to an action. Nevertheless, our approach is limited to short
term dishabituation (arbitrarily selected to 6 steps; Ω = 6). The number of states
is exponential in the number of steps, so a more general solution would probably
require generalization to be applied to the Q table; i.e., instead of a tabular format
the Q function would have to be represented compactly using function approxi-
mation.

Clearly, there is much more to be done from these initial steps to a concrete
successful application. The next step will need to address the key question: can the
overall framework be used to actually induce physiological state in VR–immersed
human participants (as compared with carefully selected control conditions)? And
if so, how effective is this scheme, and does it have any advantages over alterna-
tive, more simple approaches? If the results with human participants (ongoing)
are promising, there are still several computational challenges to address in ap-
plying the method. One of the challenges will be to show how learning a generic
simulator can be quickly transferred to different individuals with different habit-
uation and dishabituation parameters. Obviously, scaling the method to deal with
richer, more realistic, scenarios will require additional steps.

If successful, there is a wide range of long term applications for our frame-
work: combined with various neurophysiological signals, the method can be used
as part of various psychotherapeutic, entertainment or training VR scenarios, as
well as to serve as a basis for new types of adaptive environments.

27



5 References

Barry RJ, Feldmann S, Gordon E, Cocker KI, Rennie C. 1993. Elicitation and
habituation of the electrodermal orienting response in a short interstimulus in-
terval paradigm. International Journal of Psychophysiology. 15:247–253.

Benedek M, Kaernbach C. 2010. A continuous measure of phasic electrodermal
activity. Journal of Neuroscience Methods. 190:80–91.

Critchley HD. 2002. Electrodermal responses: What happens in the brain. The
Neuroscientist. 8:132–142.
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