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1 Introduction

The audio record analysis tool’s goal is to generate an automated prosody
and textual analysis for a given data recorded at any experiment (at the
AVL – Advanced Virtuality Lab in the IDC). The idea of creating such a
tool came after a year of working on a thesis aimed to connect speech to
body-movement of an avatar (virtual character). A short brief of this effort
is described at Appendix A.
The main design concepts of this tool are simplicity of use and robustness,
in the sense of fitting the tool not only to a certain experiment at the AVL.
The tool was not designed for a specific task, meaning that its output would
serve as raw data that should be post-processed by the user for his defined
purposes.
The document contain a description of the tool, a necessary background on
the main modules within it and provide a general performance analysis of
the tool.

2 Audio Record Analysis Tool Description

This tool accepts two inputs - audio file and lab streaming layer (LSL)
output file1 (XDF format, with timestamps insicating when the participant
started and stopped speaking) - and produce the outputs described in this
section:

1LSL - a data streaming system that provides synced recorded data from experiments
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2.1 Audio splitter

Given an audio file (wav format) recorded at a certain experiment and a
matching XDF file, this module split the audio file into separate time-labeled
sentence/utterance audio files (in wav as well). The main concept of this
module is roughly dividing the input audio file into sub-files according to the
utterances timestamps in the XDF file. At the next phase, the module iter-
ates over each sub-file and performs an optimization. With the detection of
silent segments at each file the module decides whether the file represents a
valid utterance (the non-silent segment is long enough) or if it should be split
again (meaning splitting an utterance into two separated sub-utterances).
In principle, this module could have worked solely on the audio file. Imple-
mentation of such feature requires that the record starting time would be part
of the audio file name and that the record quality would be good enough (in
terms of microphone’s quality and low background noise level). For example,
if loudspeakers are used as part of the experiment, this module might not be
able to distinguish between the loudspeakers and the participant’s speech.
The Audio splitting module can be adjusted using the following parameters:

1. Minimal speech threshold (dB).

2. Minimal silent time required between utterances.

3. Minimal length of the first audio segment/.

2.2 Speech-to-text converter

This module converts each of the aforementioned audio sub-files into a writ-
ten text using Google’s Cloud speech-to-text API (https://cloud.google.com/
speech-to-text/). This module has no actual parameter to tune, but since
this service is not free (when using it more than a certain times per month)
an API-key is required.

2.3 Sentence embedding

Doc2V ec model is a shallow neural network trained to generate text em-
beddings. This model would be described extensively in Section (3), so this
section is not meant for covering the technical aspect of it. The embedding
module use a pre-trained Doc2V ec model to infer each of the utterances
generated by the speech-to-text module. In practice, given a certain text
as input, the module’s output is a numeric 300-dim vector representation of
the text (the dimension size is one of the training’s parameters that can be
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changed).
This module offers two mechanisms:

1. Sentence inference - given an unseen sentence (at the training phase)
as input, inferring it with Doc2V ec (meaning generating an embedded
numeric representation) is equivalent to training the model with this
sentence as input. This process is demonstrated later (Section 5.3.2).
The user can control the number of iterations, the initial learning rate
and the minimal learning rate that are in use for the inference step.

2. Model training - the user can train a new Doc2V ec model. All that is
required from him is providing a path to a dataset (txt file containing
sentences, or paragraphs, separated by lines). The user can control the
model’s training parameters, if desired (more on these parameters at
Appendix C).

2.4 Prosody analysis

The technical aspect of this module is covered at Section (4). This module
relies on an open-source tool based on two articles - [12] and [6]. By getting
each utterance audio file as input, a dedicated prosody analysis is generated
using statistic tools and methods applied on the amplitude, fundamental
frequency and energy of the input audio file. The following features are
generated as part of the prosody analysis:

1. 38 numeric static features - statistical data that characterize the input
file (such as maximal energy, talk pause rate, etc.).

2. Additional 13 so-called ”dynamic” features describing these data
(file duration and two types of Legendre polynomial coefficients).

3. Data plots of the aforementioned features describing the energy, F0
(fundamental frequency), amplitude and dynamic features. The base-
data used for these plots is saved to a dedicated csv file.

The user can define which algorithm type he wants to use for the fundamen-
tal frequency computation, as well as whether to generate and/or store plots
for each utterance.

2.5 Requirements

In order to use the Analysis Tool for Spoken Language, the experiments
this tool would analyze should implement the following:
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1. Audio record of the entire experiment (the spoken part).

2. Utterance recognition - identifying when the participant(s) starts to
talk when the talking stops.

3. Implementation of LSL in the Unity project. This system should gen-
erate a XDF file with event marks of the audio record start, audio
record end and each of the recognized utterances start and end times
(these event marks should be at a certain text format).

Further details can be seen under the user’s guide at Appendix D.

3 Text Embedding

3.1 Background

The main aspect of this project, both in the literature research phase and
the chosen model adoption, was finding a method that measures similar-
ity between sentences. This research resulted in preferring approaches that
represent words as vectors such that shared-meaning words can be grouped
together. Bengio et al. [3], taking the statistical language modeling approach,
suggested a trained model to reduce the dimensionality of possible word se-
quences in a certain language by learning a distributed representation for
words. This is done in order to deal with unseen word sequences. Mikolov et
al. [10] showed two novel models, generally named Word2V ec, for represent-
ing words from a very large unstructured data as continuous vectors. Appar-
ently, these neural-network models are very efficient to train, and syntactic
and semantic word similarities can be detected from the generated vectors.
This model was improved [11], and later on served as the basis for Mikolov et
al. [8] work on representing documents and sentences. This method, called
Doc2V ec, is similar to Word2V ec with the addition of document sets as in-
put, such that during the training phase there are vector representations of
documents as well (“document” might refer to a paragraph or a sentence).
Eventually, the chosen model for this project was Doc2Vec [8].

3.2 Doc2Vec

In order to get a better understanding of the chosen model, its ancestor
- named Word2V ec [10] - should be explained. In brief, the goal of the
Word2V ec model is to create a distributed representation of words that
would capture semantics and syntactic information within it. This model,
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using a trained shallow neural-network containing one hidden-layer only, gen-
erates a N -dim numeric representation for each word that the model receive
as input. The training itself takes a corpus of sentences as input. It has two
different training algorithms, but its concept, maximize conditional probabil-
ity, remains the same in both of them: For each input sentence (represented
as N -dim random vector initially), the model tries to maximize the condi-
tional probability of a given word to appear given its neighboring words (a
method named continuous bag of words, or CBOW in short), or vice versa
- maximize the conditional probability of neighboring words to appear given
a center word (named skip-gram).
In order to demonstrate the training phase, the CBOW model will be de-
scribed. Initially, each word is assigned with one-hot vector at the size 1×V
(V is the size of the corpus). The model has one hidden layer, so two weight
matrices are needed. The first weight matrix W , at the size of V × n (n is
the desired output dimension), projects the input of the model to the hidden
layer using linear transformation. The second weight matrix W ′ connects the
hidden layer to the output layer. Formally, row k in weight matrix W and
column k in W ′ represent the k’th word in the corpus. Therefore, Vk (row
k vector from W ) is named input vector, where V ′

k (from W ′) is named as
output vector.
The training is done by iterating word by word and set its surrounding words,
named context window (with size C which is user-defined), as the input. The
iterated word is called center word, and the input that represent the con-
text window, denoted Wk, is generated by averaging the multiplication of
these C surrounding words’ one-hot vectors with W . Then, the objective of
the training model is to maximize the conditional probability of P (Wt|Wk),
where Wt represents a possible center word. This conditional probability is
implemented using hierarchical softmax or negative sampling as an activa-
tion function applied on the output layer, and it depends in practice in the
dot-product between the averaged input vectors and the output vector men-
tioned before.
The original center word serves as ground truth (i.e., we want the model to
assign the highest probability to this word to appear in the given context
window comparing to all the other words). The learning process is done by
backpropagation and stochastic gradient descent.
Doc2Vec works quite similarly. It has two training methodologies as well
- PV -DBOW , which is skip-gram like, and Distributed Memory Model of
Paragraph Vectors (PV -DM), which is CBOW like.
There are two main differences Doc2V ec has:

1. Using paragraphs as its input (or documents, meaning the model can
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be fed with more than one sentence at a time).

2. Generation of additional paragraph vectors that are trained as part of
the training as well. Doc2V ec model is still predicting words, with
one main addition: taking an input document, Doc2V ec objective is
maximizing the conditional probability of words within the document
to appear in this document (thus, training a document vector as some
sort of a word vector in a different vector space). In this way, the
trained model can infer (generate) an embedded representation of any
given paragraph.

While PV -DBOW try to predict the words of a certain paragraph given a
paragraph vector as input, PV -DM inherently train word-vectors as part of
its training process.
Finally, it turns out that paragraphs (words) that are more related to one
another by meaning have Doc2V ec (Word2V ec) ”closer” embedded repre-
sentations (measured with cosine similarity).

3.3 Model Training

The main intuition I had when approaching this stage was that there is a
need for a dataset containing short sentences and utterances. Since my initial
work involved short utterances spoken throughout conversation (described at
Appendix A), such a dataset is required in order for the trained model to
fit AVL experiment’s characteristics. Models that were trained using the
familiar datasets, which contain long texts such as Wikipedia values, movie
reviews or news articles, did not provide satisfying results when I tried to
infer short utterances with them and compare the resulted similarity.
Therefore, I have combined seven datasets of what I thought to be short
enough texts to form my training dataset. The datasets are:

1. Subset of the British National Corpus (http://www.natcorp.ox.ac.uk/)
that is transcribed unscripted spoken dialogue. This dataset was ex-
tracted and preprocessed as part of this project (https://github.com/
Phylliida/Dialogue-Datasets).

2. Cornell Movie–Dialogs Corpus [5]

3. DailyDialog: A Manually Labeled Multi-turn Dialogue Dataset [9]
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4. Stanford’s NLP Group - a New Multi-Turn, Multi-Domain, Task-Oriented
Dialogue Dataset [7]

5. TickTock and IRIS from WOCHAT (Workshops and Session Series
on Chatbots and Conversational Agents) (http://workshop.colips.org/
wochat/data/index.html)

6. CIC dataset, based on original data from the human evaluation round of
The Conversational Intelligence Challenge (CIC). Various Chatbots are
used in the dialogues (https://dbd-challenge.github.io/dbdc3/datasets.
html).

7. OpenSubtitles2016 - a collection of translated movie subtitles from
http://www.opensubtitles.org/. From this huge stockpile I used the
English part of the English-Spanish movies translations.

Prior to training, the aforementioned datasets went through some preprocess-
ing, included removal of (some of the) duplications, lower-case capital letters,
punctuation mark removal, digits to text conversion, converting most of the
shortcuts into standard format (for example, that′s to that is), removal of
invalid and single characters and slang and correction of some of the spelling
mistakes.
In total, by using datasets 1-6 I managed to create a dataset containing al-
most 547K sentences. To this amount I have added part of the open-subtitles
dataset with some variations. After generating few dataset versions, with a
varying number of sentences taken from ”OpenSubtitles2106”, the final data
set size I used was 3, 410K sentences.
I trained dozens of models throughout the last year using different parame-
ters and dataset variations. The chosen model, trained with the dataset at
the aforementioned size, proved to succeed more than the others in a short in-
ference test I conducted (found better similarity between context-matching
sentences than the other models and vice versa). A demonstration of the
model results on the recorded experiments’ data is shown at section 5.3, and
the model’s general performance is demonstrated at Appendix C.

4 Prosody Analysis

According to Wikipedia, ”in linguistics, prosody is concerned with those
elements of speech that are not individual phonetic segments (vowels and
consonants) but are properties of syllables and larger units of speech” (https:
//en.wikipedia.org/wiki/Prosody (linguistics)). Since this subject is out of

7

http://workshop.colips.org/wochat/data/index.html
http://workshop.colips.org/wochat/data/index.html
https://dbd-challenge.github.io/dbdc3/datasets.html
https://dbd-challenge.github.io/dbdc3/datasets.html
http://www.opensubtitles.org/
https://en.wikipedia.org/wiki/Prosody_(linguistics)
https://en.wikipedia.org/wiki/Prosody_(linguistics)


the scope of the original thesis, it will be described briefly.
As stated before, the prosody analysis implemented in this project mostly
relies on three main properties:

1. Fundamental Frequency (F0) – the basic definition of F0 is the
lowest frequency of a periodic wave. At the speech domain, F0 is often
referred as the pitch of an audio signal – how high or low is the sound.
F0 can also be described as the frequency at which our vocal cords
are operating at a given time. Since this frequency varies throughout
an utterance, its computation over time is done by dividing the audio
signal into small segments and extracting the value of F0 from each.
There are several algorithms that estimates F0. In this specific tool
two of them are in use: The default one is based on the intended
PRAAT software [4] - a computer program that analyze, synthesize,
and manipulate speech data and present the output in high quality. The
other algorithm named RAPT [2] (robust algorithm for pitch tracking),
and is widely used within speech applications.

2. Amplitude - can be defined as the difference between the zero level
and peak of the audio signal.

3. Energy - [1] defines the signal’s energy as the reflection of the sig-
nal’s amplitude variation, or how much signal there is at a given time.
Energy is measured with dB and is calculated on a short period basis
(small windows of time) by the following equation:

Energy (dB) =
1

N

N∑
n=1

V (n) (1)

where N is the number of samples at a time window and V (n) is the
signals value at time n. Usually there is a correlation between voiced
segments at an audio signal (high energy, when a person speaks) to
unvoiced segments (low energy, when the person is silent).

5 Tool Evaluation

5.1 Audio Splitter Evaluation

The initial stage at the tool’s pipeline does a sufficient job. Tested on few ex-
periments’ audio records from the AVL (medium quality microphone and par-
ticipants with varying level of English speech and accent), the Audio Splitter
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managed to extract more than 90% of the spoken sentences (113/125 sen-
tences from 6 participants), while giving only 3 false-positives (background
noises that were recognized as speech).

5.2 Speech-to-Text Evaluation

The speech to text conversion feature is crucially dependent on the quality
of audio record, as well as on the quality of speech. An attempt to convert
speech of participants with bad level of English, or with a significant accent, is
likely to result in texts without a meaning. Nevertheless, good audio records
of allegedly native speakers can also result, sometimes, in an undesirable
results due to local low volume/noisy segments or the use of unique words
(such as names of unfamiliar places, names of people, etc.). A speech-to-text
conversion demonstration, of relatively good record, is shown at Appendix
B.

5.3 Sentence Embedding Evaluation

Originally, Doc2V ec model did not aim to deal with spoken utterances. The
main goal of Doc2V ec model was finding similarity between paragraphs for
classification tasks such as sentiment analysis. Accordingly, some of the
common large datasets available on-line are good for this purpose. Although
the Analysis Tool for Spoken Language does not meant to support a certain
use, I find it impossible to evaluate its performance without defining some
task that it can be tested on. Therefore, and despite Doc2V ec’s original
intention, I set the model’s goal to find similarity between pairs of utterances
in such a way that responses to a certain question (at an experiment) would
be more similar than responses to other questions.
After training dozens of models using different variations of few datasets
(existing datasets and ones that was created by me), I can state that my
goal is yet to be achieved. However, taking into account the fact that the
recorded data used for the model evaluation was not optimized (straight-
forward transcription or speech2text conversion), as well as the unrestricted
answers domain (participants were not guided what and how to respond),
than we did receive some meaningful results.
The following figure demonstrates the prediction (inference) of the chosen
Doc2V ec model on some (not all) of the data. For generating this figure I
mapped responses from five different participants to the same five questions
(not all the participants answered all the questions) and used PCA (the first
two components) to represent part of these answers.
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Figure 1: PCA representation of embedded sentences
(R300 → R2 dimension reduction) where each color represents

an answer to a certain question. For example, ”P2 S1” is
answer of participant 2 to question #1

As seen at the figure, we can group some of the answers to the same questions
next to each other using a reduced representation of their embeddings.
The questions I used were the following:

1. S1 – ”Hello, thanks for coming. First, tell us a little bit about yourself”.

2. S2 – ”Alright, I get it. So, why should we hire you?”

3. S4 – ”Describe the best boss you ever had.”

4. S7 – ”You know this job would require some mathematical skills. You
have 30 seconds, I want you to please count the prime numbers, starting
from 1 and getting as far as you can in 30 seconds.”

5. S8 – ”How od you like to work – Alone? Part of a team?”

To evaluate the embedding, I chose KMeans algorithm. I ran it on the
original embeddings (R300) as input, and set the number of desired clusters
to five (which is the number of different questions that I chose to embed their
responses). The figure below represent the results. Each color represent a
different cluster, and the use in PCA (R300 → R2) was done for display
purposes only (running KMeans on the PCA result (with dimension R10)
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did not show better results). The interesting fact is that we got purity values
varied between 0.7 to 0.83 for this clustering, while clustering a random data
generated purity values at the range 0.42-0.58.

Figure 2: KMeans clustering results on the original input
(R300). Each color represent a certain cluster. Each data point
labeled with a format indicating the participant and question
number. For example, ”P2 S1” is answer of participant 2 to
question #1. The PCA representation of embedded sentences

(R300 → R2 dimension reduction) is for display purpose

In order to examine how significant is the purity values calculated from the
clustering, I ran the following test, showed at the figure below: I made 1000
trials of KMeans on the recorded data and calculated the purity value for
each. I made additional 1000 reference trials on a random data, where in
each trial I generated a newly random data (matching to the recorded data
by dimensionality and quantity). For each random data trial I ran KMeans
25 times, calculated the purity value of each and chose the best-out-of-25
value. The distributions of these values are at the figure below. Eventually,
I used Wilcoxon rank-sum test, with these two distributions as inputs, to
measure the significance of the findings. I got a p-value < 0.001, meaning
a significant result in term of contradicting the assumption that the purity
values from our recorded data, which were better than the random data
purities, were received by chance.
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Figure 3: Purity values’ comparison between 1000 trials of
KMeans ran on a random data where each trial is the best
purity score of another 25 KMeans trials, and another 1000

trials on the recorded data

Additional comparison domain is to alternative models. When comparing our
trained model to a reference model (available online), trained with Wikipedia
dataset, we can see that the resulting PCA representation looks worse com-
paring to our model representation, and the KMeans clustering are poorer
as well (purity values of 0.41-0.54).
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Figure 4: The same PCA and KMeans clustering as in the
previous figure performed on results generated by a reference

model, trained with Wikipedia dataset
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Additional evaluation can be done by observing the correlations - Pearson
and cosine similarity - between every possible pair of embeddings. These
comparison is shown in the following figures:

Figure 5: Pearson correlation (upper figure) and cosine
similarity (lower figure) between pairs of embeddings calculated

on the data in the original dimension (R300).
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However, as seen in the table below, this correlations do not help in clustering
the data. When comparing the average in-cluster correlation (similarity)
to the average correlation of a certain cluster’s embeddings with the other
clusters’ embeddings, it cannot be said that the in-cluster correlations are
higher than the other in most of the cases (especially when observing the
Pearson correlation).

Cosine Similarity Pearson Correlation
Question In-cluster W\ rest of clusters In-cluster W\ rest of clusters

1 0.659 0.484 0.592 0.52
2 0.476 0.498 0.437 0.502
4 0.585 0.507 0.47 0.495
7 0.702 0.508 0.534 0.53
8 0.428 0.462 0.426 0.487

Table 1: Correlations comparison. Presenting the average
correlation value of embeddings at the same cluster comparing
to the correlation between this certain cluster’s embeddings to
the other clusters. The better correlations in each comparison

are emphasized

In addition to the prediction demonstration and the general performance,
which described at Appendix C (alongside the model’s parameters), two main
aspects of this module can be evaluated: The first is the difference between
model-generated sentences (using the speech2text module) and transcribed
sentences. The second aspect is the inference phase (how to fine-tune the
post-training embedding process). Both of these aspects will be covered in
the following sections.
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5.3.1 Transcribed vs. Automated Utterances

This section is a co-evaluation of the model’s performance alongside the
speech2text API evaluation and the steps effect on the inference (which is
demonstrated at the next section, 5.3.2). Below lies a comparison of the
embedding representation of two sets of responses to the same questions –
the first responses were generated with speech2text API and the second one
by transcription (Note that there are more transcribed sentences since the
model did not manage to automatically convert all the utterances at the
speech2text module).

Figure 6: PCA representation of embedded sentences (R300 → R2,
using steps = 20) where each color represents an answer to a certain

question. The upper image represents the model’s speech2text
output sentences and the lower image is the transcribed ones.
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Figure 7: A similar example to Figure 5 - this time with different
number of inference steps (25) and additional questions’ responses.

From the two pairs of images, and additional ones I examined, I got the
following insight: Although numerically the generated vectors using different
steps number at the inference of a certain sentence differ from one another,
the general relation between sentences stays the same. In this work’s case,
where a possible goal is to separate the responses of each question from the
other responses (creating ”groups of colors” in lower-dimension, as seen in
the upper images), it is not clear that using transcribed sentences outscores
by large margin the model’s automated speech2text sentences (although we
should keep in mind the speech2text API fails converting some utterances).
In this work I chose presenting the transcribed sentences’ embedding at the
model evaluation section since they showed more accurate results.
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5.3.2 Inference Steps

Additional parameters that require adjustment are related to the inference -
the learning rate and number of steps (iterations). Changing these parame-
ters impact significantly on the result, as demonstrated in the figure below.
In this model case, keeping the original learning rates (from the training
phase) and choosing 10 steps gave the most satisfying results.
The following figure demonstrates the effect of the steps number on the out-
put. As final note for this section, I have no recommendation regarding the
optimal steps number other than test and evaluate them.

Figure 8: PCA representation of embedded sentences (R300 → R2)
using different number of steps for inference. Each color represents
an answer to a certain question. The step values from upper-right,

clockwise, are 20,10,5,15.
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5.4 Prosody Analysis Evaluation

In general, it is hard to evaluate prosody analysis since this analysis relates
to the context of what you seek and the manipulations that are done on
the data. Hence, I feel confident to say that the prosody analysis module
provides a stable initial analysis of the input fed into it.
The following figures serves as a demonstration of the output for each given
utterance (four different figures for each utterance). A small but important
note - the entire data used for these plots generation is saved during the tool’s
runtime, so it can be manipulated and later-presented according to the users
definitions:

Figure 9: Amplitude and fundamental frequency of an utterance
generated using PRAAT software.

Figure 10: Energy, amplitude and fundamental frequency of an utterance
generated using RAPT algorithm.
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Figure 11: The fundamental frequency and the appropriate linear
regression using PRAAT software.

Figure 12: The energy and fundamental frequency, generated by the
Legendre polynomial coefficients estimation, comparing to the measured

ones (using PRAAT software).

20



Furthermore, when running a comparison between different participants’ re-
sponses to the same questions it is clear that there is some correlation between
the responses and some of the prosody features. In other words, looking at
some feature - there is a trend between the responses of a certain participant
that is observed in other participants responses as well. This is demonstrated
in the following figure:

Figure 13: A comparison of 2 of the prosody features -
duration pauses STD and V oiced duration regularity. Each color

represent a different participant. Each x-axis number represents a certain
question. Note that there are some unanswered questions by some of the
participants - the circle marker indicates which questions were answered.
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To generate an evaluation for the prosody features, I chose four questions
for whom I had answers from the same five participants. For each prosody
feature i (1 ≤ i ≤ 38) I generated five participants’ vectors with four entries
each (Pn = x1, x2, x4, x8, n = 2, 5, 6, 7, 10 and correspond to the participants
ID described at section 5.3). Each entry xt is the calculated value of prosody
feature i from participant’s n answer to question number t (the values of
t correspond to the questions with the same numbers described at section
5.3).
Eventually, I calculated a correlation matrix between the participants’
vectors. This was done using both Pearson and Spearman correlations
(separately) between every pair of participant’s vectors. Intuitively, For each
prosody feature, the correlation results represent participants behavior along
questions, or how similarly different participants answered to the same ques-
tions (in the context of a certain prosody feature). I plotted some of the 38
features’ results as demonstration:

Figure 14: Correlation matrices of three different prosody features.
Possible correlation values are at the range [−1 1].

To evaluate how significant are the correlations depicted above, I conducted
the following trial: for each prosody feature I generated a 4X5 matrix, de-
noted by M , from its corresponding participants vectors (each vector as 1X5
column).

M4X5 =
(
Pi2 Pi5 Pi6 Pi7 Pi10

)
, 1 ≤ i ≤ 38 (2)

Using M , I generated additional 100 permutations of M , denoted by M ′, by
shuffling the order of the participants vectors Pi2 , Pi5 , Pi6 , Pi7 and Pi10 (in-
dividually, without mixing values between different participants). For each
of these 100 M ′ permutations I calculated the correlation matrix as depicted
above (using both Pearson and Spearman correlation values). Since each
correlation matrix contains ten relevant unique values (the correlation val-
ues between different pairings of participants), I ended up with ten original
correlation values and additional 1000 random values. Ultimately, my goal
was searching for features with correlation matrix that shows significant con-
nection between the sets of answers to my set of questions given by different
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participants.
In order to find these features I ranked the data (1010 entries), and ex-
tracted the ranks of the ten original correlation values. I decided to use
Wilcoxon rank-sum test to express the aforementioned significance, and ex-
plicitly its output p-value. By using this test, as seen at the table below,
I managed to show the odds that the ranks of my ten original correlation’s
values was randomly selected from the entire ranked data (1010 entries).
Features with p-value lower than 0.05 are the ones that I looked for. Both
correlations – Pearson and Spearman – gave similar results (with slight pref-
erence to Pearson’s ones), so only the p-value based on Pearson correlations’
data are presented in the following table:

prosody Feature P-Value

Average fundamental frequency in voiced segments 0.9
Standard deviation of fundamental frequency in Hz 0.01
Variability of fundamental frequency in semitones 0.03

Maximum of the fundamental frequency in Hz 0.01
Average energy in dB 0.41

Standard deviation of energy in dB 0.66
Maximum energy 0.74

Voiced rate (number of voiced segments per second) 0.72
Average duration of voiced segments 0.82

Standard deviation of duration of voiced segments 0.05
Pause rate(number of pauses per second) 0.62

Average duration of pauses 0.43
Standard deviation of duration of pauses 0.92

Average tilt of fundamental frequency 0.91
Tilt regularity of fundamental frequency 0.22

Mean square error of the reconstructed F0 with a 1-degree
polynomial

0.31

(Silence duration) / (Voiced + Unvoiced durations) 0.28
(Voiced duration) / (Unvoiced durations) 0.69

(Unvoiced duration) / (Voiced + Unvoiced durations) 0.35
(Voiced duration) / (Voiced + Unvoiced durations) 0.39

(Voiced duration) / (Silence durations) 0.23
(Unvoiced duration) / (Silence durations) 0.66

Unvoiced duration Regularity 0.5
Unvoiced energy Regularity 0.24
Voiced duration Regularity 0.57
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Voiced energy Regularity 0.62
Pause duration Regularity 0.92

Maximum duration of voiced segments 0.94
Maximum duration of unvoiced segments 0.29

Minimum duration of voiced segments 0.56
Minimum duration of unvoiced segments 0.68

rate (# of voiced segments) / (# of unvoiced segments) 0.01
Average tilt of energy contour 0.33

Regression coefficient between the energy contour and a linear
regression

0.55

Mean square error of the reconstructed energy contour with a
1-degree polynomial

0.02

Regression coefficient between the F0 contour and a linear
regression

0.96

Average Delta energy within consecutive voiced segments 0.9
Standard deviation of Delta energy within consecutive voiced

segments
0.71

Table 2: The P-Value of each prosody feature generated by
Wilcoxon rank-sum test on the data from the trials depicted

above. Emphesized numbers are with P-Value> 0.05.

As observed from the emphasized P-values on the table above, there are some
features which imply on a possible relation between how a person answer a
question to these features’ values. To conclude these section and the quality
of the features with low p-value, we ran calculated the FDR (false discovery
rate) of the entire features, with ρ = 0.05 and i = 6 (the number of features
with p-value equal to ρ or less):

FDR =
ρ ∗N
i

=
0.05 ∗ 38

6
= 0.317 (3)
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6 Conclusions

The Analysis Tool for Spoken Language is a robust tool designed for IDC’s
AVL (advanced virtuality lab). Alongside the independence of some of its
component (i.e. prosody features stays the same, regardless to the sentence
embedding results), it supplies a simple GUI for users (and easy-to-change
code for developers) to control and adjust its output. Furthermore, this
tool’s performance can be improved. The functionality added to this tool’s
code allows both to improve its current building blocks (training a better
text embedding model, for instance) and replacing entire building block (i.e.,
using another embedding method) quite easily.
On a personal note, this tool combines features that each one, independently,
can be a subject for extensive research. Though this work quite diverged from
the original research question I had (connecting speech to movement), my
hopes are that this tool will be in use for years to come in the AVL.
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Appendices

A Thesis Brief

Connecting speech to body-movement is a complicated task. More than a
year ago, a research proposal submitted under the name Matching Nonverbal
Content to a Virtual Human’s Speech Content: A Data-Driven Approach.
This proposal aimed, using a VR (Virtual Reality) environment, to imple-
ment the following framework:

Figure 15: The thesis’ framework. The left side demonstrates how the
database (DB) is constructed. On the right there is a demonstration of a
conversation with a virtual character that uses the recorded data in order

to match text to body language (movement).

Throughout the last year I faced some difficulties that caused me to shift my
original thesis plan into the project that was described in the aforementioned
sections.

The research at the heart of this work was finding a relation between spoken
content and body language. Prior to that stage, some preparation work had
to be done in order to capture appropriate data. My work on the thesis
included the following main stages:
The first stage of my work involved building a virtual environment for
the data capture scenario. This phase included adding audio and move-
ments (headset and hand-trackers spatial and rotational coordinates) data
capture abilities to an existing virtual environment at the AVL (so this data
capture mechanism can be used for other projects as well).
The second stage, which probably required the greatest amount of time, was
deciding on the text embedding (representation) model. The chosen
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model was Doc2Vec [8], which relies on its ancestor named Word2Vec [10].
Prior to the model training, I conducted a research on datasets to fit the
experiment scenario (in general, short utterances). This research resulted in
generating a new dataset by merging and post-processing few existing ones.
Both the model and dataset generation were described in Section 3.
Over the course of the year there was a main conceptual change at the data
we decided to record (due to practical reasons) - instead of dialogue with
an avatar scenario, the data we recorded was job interview scenario where
a participant faced two avatars interviewers. The data record stage took
place at the second (spring) semester of 2018. A total amount of fifteen
participants were recorded as part of the job interview experiment, and the
data recorded from twelve of them was valid for use (relating the quality and
amount of data from each record).
The last two stages, which meant to be the heart of this work, were data
analysis and manipulations (normalization, extracting features from move-
ments etc.) and matching attempts between the extracted features
and embedded sentences by applying different methods on the data (prin-
cipal components analysis – PCA, canonical correlation and two-branch neu-
ral network).

During the last year there were more than a few difficulties as part of this
work. The most critical among these difficulties is related to the recorded
data. Its small quantity (total of ∼250 sentences and matching movements),
as well as its quality (most of the recorded data, which was the hand move-
ments, turned out not to be useful), made the correlation research almost
irrelevant and prevented me from using NN (lack of data). In addition, I
found out that the Doc2V ec model I trained (I actually trained and tested
more than dozen models) did not provide satisfactory results in terms of ob-
taining high similarity between sentences with closer meaning (my assump-
tion was that the dataset used for training does not emulate sufficiently the
spoken content of a job interview). More on that in a dedicated section 3.2.
Despite the unsuccessful matching attempts aforementioned, I found that
some of the features generated for the thesis’ data record, as well as the data
itself, can be useful in other projects. This was the initial seed for the audio
Analysis Tool for Spoken Language project.
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B Speech-to-Text Conversion Demonstration

# Actual Text Speech2Text result

1 ”sure. ny name is Stephanie I am
24 years old I was born in argentina
and i moved here four years ago, I
am currently studying communica-
tion at the IDC”

”sure my name is Stephanie I am 24
years old I was born in Argentina
and I moved here four years ago
I’m currently studying Communi-
cations”

2 ”Well i think I am a very good
learner that can do pretty much
any job. I like working hard and
I really like learning all the time”

I think I’m a good learner that can
do pretty much any job I love work-
ing hard and I really like learning
all the time”

3 ”I think it could be my ability just
to improve myself in any position
and to learn from everyone”

”I think it’s that could be my abil-
ity to improve myself in every posi-
tion and to learn from everyone”

4 ”Yes I would. I would really like
to work on my own designs. I am
mainly interested in product design
and interface and UX so i would re-
ally like to improve on that”

”yes I would I would really like to
work on my own design some rea-
son to sing in their product design
and interface”

5 ”well I am currently making about
60 shekels an hour so I would not
have want to go below that but if
the benefits are good enough it is a
possibility”

”I’m currently making about 60$
an hour in the benefits are good
enough”

6 ”I think I standby my position. I
would not leave my job, if not”

”I think I stand by my position I
wouldn’t leave my job”

7 ”Best boss I ever had it is prob-
ably my current boss. He is very
welcoming to criticism. he lets me
work on my own projects. He al-
ways asks for my opinion”

”Best I Ever Had it’s probably in
my car and boss is very welcoming
to create a system he lets me work
on my own projects always ask for
my opinions”
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8 ”I think I handle it pretty well. I
work very well under pressure. I
am currently a class representative
of my entire class of 120 students
and i manage them all. I listen to
them I hear their complaints I raise
issues and I solve them so I think I
am really good”

”I think I did pretty well I work
very well under pressure I’m cur-
rently at for my entire class and I
listen to them I sure that complains
I erase issues and I sought them so
I think I’m pretty good”

9 ”I think I work really well alone
but I am also good with teams
and eventually I think teamwork is
more fun and it gets you farther
than working by yourself”

”I think I work really well alone but
I’m also good with teams and even-
tually I think he work it’s more fun
and it gets you farther than work-
ing by yourself”

10 ”My biggest accomplishment” ”the biggest accomplishment”

11 ”It will be just be here and the per-
son I am today I think. It was a
big step to move from my home and
come here and start over so I really
like the place I am right now ”

”it will be easier on the person I am
today I think it was a big stuffed
animals from my home and start
over so I really like the place I am
right now”

12 ”actually I am. I am the top of my
class”

”actually I am on the top of my
class”

13 ”My greatest weakness. Sometimes
I like to do it all everything by my-
self so it is hard for me to listen to
criticism, but I am working on it”

”my greatest weakness sometimes I
like to do it all everything myself
it’s hard for me to listen to criticism
by the way I’m working on it”

14 ”I think I like most that it is very
practical”

-

15 ”It is something I can really apply
in my work area. I am learning by
doing which is really the best for
me”

”something I can apply in my work
area and I’m learning by doing
which is the best for me”

Table 3: A comparison between the model’s speech2text output
and a manual transcription of the audio file. The audio record is

considered good - both by power and accent means.
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C Doc2Vec Details

C.1 Model Parameters

I used the following parameters for my model (using explanations from https:
//radimrehurek.com/gensim/models/doc2vec.html):

1. dm = 1 (using PV-DM training algorithm)

2. dbow words = 1 (train word-vectors simultaneously with doc-vector
training. Irrelevant for PV-DM algorithm)

3. dm concat = 1 (using concatenation of the context vectors rather than
sum/average them)

4. hs = 1 (using hierarchical softmax for model’s training rather than
negative sampling)

5. alpha = 0.025 (initial learning rate)

6. min alpha = 0.0001 (Learning rate will linearly drop to this value as
training progresses)

7. iter = 5 (number of iterations over the dataset while training)

8. epochs = 10
note: this is not an actual parameter of the model. I used 10 epochs,
and in each of these epochs I did 5 iterations (iter = 5) over the
dataset with a fixed learning rate, resulting in total of 50 iterations
over the data. The learning rate was manually reduced in a linear
manner between epochs at the range [alpha,min alpha]

9. size = 300 (dimension of the input feature vectors)

10. min count = 7 (ignores all words with total frequency lower than this)

11. sample = 1e−5 (The threshold for configuring which higher-frequency
words are randomly down-sampled, useful range is [0, 1e-5])

12. window = 3 (maximal distance between the current and predicted word
within a sentence)
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C.2 Model’s Performance

In the following section I will briefly demonstrate what can be achieved us-
ing the chosen Doc2V ec model. Since there are many ways to evaluate
its performance, the focus will be on the aspects that I find more relevant
to this project’s scope. In general, there are two types of comparisons -
prediction (finding the best similarity with some word/sentence from the
training dataset) and similarity (evaluate how inputs are related to each
other, without relating to the dataset itself).

C.2.1 General Behavior

In term of single words (Doc2V ec trains word vectors as part of its training)
prediction, we get the results in the following table. The fact that the model
contains 39883 different words that appeared at least 7 (set by min count
parameter) times in the dataset should be considered. For example, the
following figure shows what are the most similar words to ”Paris” and ”good”
that were found in the training corpus:

Word Similarity to ’paris’ Word Similarity to ’good’

’moscow’ 0.483 ’late’ 0.515
’rome’ 0.448 ’fine’ 0.512
’berne’ 0.445 ’right’ 0.491

’canada’ 0.44 ’afternoon’ 0.477
’colombia’ 0.437 ’nice’ 0.476

’amsterdam’ 0.43 ’bad’ 0.468
’bremen’ 0.428 ’great’ 0.462

’guangzhou’ 0.427 ’well’ 0.459
’frankfurt’ 0.424 ’real’ 0.441

’lahore’ 0.423 ’hold’ 0.44

Table 4: A demonstration of the most similar words to ’paris’
(left) and ’good’ (right). Note that the model was trained

lowercase words. The similarity columns indicates the cosine
similarity score between 2 word vectors.

Another example is finding the word that does not match to the others in a
given list of words (in practice, it is the word further away from the mean of
all the other words). When given the following list of words - ’paris’, ’cat’,
’lion’, ’dog’, ’tiger’ - the model returns ’paris’ as the un-matched word.
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When dealing with document vectors, the results are much less clear, or use-
ful, in terms of prediction. The model contains 3409547 document (sentences)
vectors, when some of the sentences appear more than once. One quite good
prediction example is finding what are the 10-most similar dataset’s sentences
to the following one are you trying to insult me, which is from the dataset as
well:

1. ”violence of some kind”

2. ”resorting to violence”

3. ”i abominate violence”

4. ”and resorted to violence”

5. ”no violence here”

6. ”violence is so”

7. ”i watched every bit of news about you”

8. ”makes you wonder”

9. ”it kind of makes you wonder do not it”

10. ”no more violence”

It is clear that the word ”insult” got the context of ”violence” throughout
training.
A far less impressive example is trying to find the similarity to a new sentence
(was not part of the training dataset). This is done by inferring the new
sentence to form a vector representation (at R300) and than looking into its
similarity with the document vectors from the dataset. In this case, these
are the 10-most similar sentences from the dataset to ”where have you been
until now it is really late and i was worried :

1. ”she gets back late”

2. ”you are late i walk”

3. ”you are late”

4. ”jim you won”

5. ”of course how stupid of me”

6. ”it is very late”

32



7. ”too late for the hospital”

8. ”it is late”

9. ”well we won jim”.

After examining few similar cases it looks as the model ”sticks” to a dom-
inant word in the input sentence when trying to predict similar sentences
from the dataset.

Another domain of comparison, which is probably the most relevant to this
tool’s main use, is finding similarity between pairs in a group of sentences
(utterances). One use-case for such a task is the ability to classify responses
according to what they originally related to. I tested this task by trying to
take two groups of 4 sentences each - one group contains possible answers
to the question ”how is the weather”, where the other group contains an-
swers for ”what is your favorite food?”. For display purposes, I labeled each
sentence with a number:

1. S1 = ”the weather in israel is hot and wet”

2. S2 = ”it is very cold here right now”

3. S3 = ”today is a sunny day”

4. S4 = ”the temperature now is minus ten degrees so it is cold”

5. S5 = ”pizza is the best food in the world”

6. S6 = ”i really like to eat chocolate”

7. S7 = ”i love cakes”

8. S8 = ”i am trying to eat healthy food so salad”

The following table shows the similarity of each pair of sentences. I inferred
them with alpha = 0.025, min alpha = 0.0001 and steps = 10:
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- S1 S2 S3 S4 S5 S6 S7 S8

S1 - -0.025 0.227 -0.003 -0.063 -0.072 0.006 -0.068
S2 -0.025 - -0.025 0.294 -0.073 -0.003 0.038 0.021
S3 0.227 -0.025 - -0.028 -0.044 0.018 0.029 0.003
S4 -0.003 0.294 -0.028 - 0.264 -0.025 -0.01 -0.135

S5 -0.063 -0.073 -0.044 0.264 - -0.042 0.054 0.122
S6 -0.072 -0.003 0.018 -0.025 -0.042 - -0.043 0.137
S7 0.006 0.038 0.029 -0.01 0.054 -0.043 - -0.112
S8 -0.068 0.021 0.003 -0.135 0.122 0.137 -0.112 -

Table 5: Similarity between the aforementioned sentences.
S1-S4 are the weather group sentences, S5-S8 are from the

”food” group. The most similar pair in each row is emphasized
with bold.

As seen in the table above - on one hand, the similarity value are relatively
low (the cosine similarity’s maximal value is 1). However, when the task
is classification, than the model showed satisfying results. Other than one
sentence from the ”food” group (”pizza is the best food in the world”), that
its best pair was from the ”weather” group (”the temperature now is minus
ten degrees so it is cold”), rest of the sentences got a matching pair from
their original group.
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D User Guide

D.1 Basic User

Welcome to AudextBox!
This tool provides, for a given audio and XDF files recorded at a certain
experiment, the following features: splitting the audio file into utterances
sub-files, converting them into text, generating an embedded representation
for each utterance as well as comprehensive prosody analysis raw-data for
further inspection.
To use this tool we have supplied you a basic GUI (Graphical User Inetrface)
which requires to do the following:

1. Double-click on the ”ABM Run” icon on the Desktop.

2. A window with the following parameters would be displayed shortly
after you click:

Figure 16: GUI layout

(a) Save Path - defines the directory where the results will be saved
in.

(b) Audio F ile - The audio file that was recorded in the experiment
and needs to be analyzed.

(c) XDF File - The matching XDF file that was created at the same
experiment [of the audio file].
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(d) D2V Model Path - A path to the desired Doc2V ec model. If
not chosen, the tool will use its default model (the one whose
performance was analyzed at the previous sections).

(e) Use speech2text API - If checked, the program will convert the
audio files into text, using Google’s online speech2text API.

(f) Use RAPT algo for F0 - if checked, RAPT algorithm would be
in use for the F0 estimation, otherwise PRAAT .

(g) Show prosody figures - if checked, the program will show every
prosody analysis figure that is created, and wait for closing the
figure’s window upon continuing to the next figure (since there
are 4 different figures for each utterance, it’s recommended to un-
check this option).

3. When finished - hit the RUN button!

That’s it! Once the program starts running, it creates a new folder using the
input audio file name under Save path you defined (after removal of .wav
suffix and record prefix, if exists. At JOY experiment it means the folder
name is the date&time of the record). The data is saved inside this new
folder in the following structure:

1. wavs directory - contains a dedicated wav file for each utterance (split
from the main input audio file)

2. audio data directory - contains csv file for each wav file (named
utterance xx audio data, where xx is the utterance’s number). Each
file stores a timestamped raw-data of F0, amplitude and energy of the
certain utterance. The timestamps are ”global”, meaning related to
the initial input audio file, and not to the matching audio file at the
wavs folder.

3. dynamic features directory - contains csv file for each wav file with
the prosody analysis’ dynamic features (which are the coefficients of
Legendre polynomial model of both the energy and fundamental fre-
quency extracted from the audio file)

4. figs directory - stores a graphic representation of the prosody analysis
results of each utterance (based, among the rest, on the data stored at
dynamic features and audio data folders). For each utterance there
are 4 different figures.

5. utterances data.json - the main output file. Stores the following fields
for each utterance:
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(a) File Name - the specific utterance wav file name

(b) Timings - Start T ime and End Time (relative to the initial input
audio file) in ms

(c) Text - the speech2text conversion for the utterance audio file

(d) Doc2V ec - the embedded representation (namedEmbedded sentence
in the file) of the text (dimension - 300)

(e) Prosody Analysis - contains 38 static features (described here
D.1.1)

D.1.1 Prosody Analysis Static Features

1. Average fundamental frequency in voiced segments

2. Standard deviation of fundamental frequency in Hz

3. Variablity of fundamental frequency in semitones

4. Maximum of the fundamental frequency in Hz

5. Average energy in dB

6. Standard deviation of energy in dB

7. Maximum energy

8. Voiced rate (number of voiced segments per second)

9. Average duration of voiced segments

10. Standard deviation of duration of voiced segments

11. Pause rate(number of pauses per second)

12. Average duration of pauses

13. Standard deviation of duration of pauses

14. Average tilt of fundamental frequency

15. Tilt regularity of fundamental frequency

16. Mean square error of the reconstructed F0 with a 1-degree polynomial

17. (Silence duration) / (Voiced + Unvoiced durations)
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18. (Voiced duration) / (Unvoiced durations)

19. (Unvoiced duration) / (Voiced + Unvoiced durations)

20. (Voiced duration) / (Voiced + Unvoiced durations)

21. (Voiced duration) / (Silence durations)

22. (Unvoiced duration) / (Silence durations)

23. Unvoiced duration Regularity

24. Unvoiced energy Regularity

25. Voiced duration Regularity

26. Voiced energy Regularity

27. Pause duration Regularity

28. Maximum duration of voiced segments

29. Maximum duration of unvoiced segments

30. Minimum duration of voiced segments

31. Minimum duration of unvoiced segments

32. rate (# of voiced segments) / (# of unvoiced segments)

33. Average tilt of energy contour

34. Regression coefficient between the energy contour and a linear regres-
sion

35. Mean square error of the reconstructed energy contour with a 1-degree
polynomial

36. Regression coefficient between the F0 contour and a linear regression

37. Average Delta energy within consecutive voiced segments

38. Standard deviation of Delta energy within consecutive voiced segments
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