
The Interdisciplinary Center,

Herzlia
Efi Arazi School of Computer Science

M.Sc. program - Research Track

Attacking ARM TrustZone

using Hardware vulnerability

by

Ron Stajnrod

M.Sc. dissertation, submitted in partial fulfillment of the requirements for

the M.Sc. degree, research track, School of Computer Science

 The Interdisciplinary Center, Herzliya

February 2021

1

This work was carried out under the supervision of Dr. Nezer Zaidenberg

and assistance of Raz Ben Yehuda from the University of Jyväskylä,

Finland.

2

Abstract

ARM TrustZone offers trusted execution environment (TEE) embedded into the processor

cores. ARM TrustZone has become widely used in ARM processor devices such as

Smartphones, IoT devices and Embedded devices. Due to the increase of security

awareness ARM implements the TrustZone mechanism which enables device

manufacturers to add secure storage and secure applications to perform cryptographic logic

like saving user fingerprint or DRM protection to prevent data leakage.

While ARM TrustZone can improve the overall security of the device it depends on the

vendor (Who manufacture the System-on-chip) to fully comply with ARM TrustZone

specification. In the case where a vendor does not fully comply with ARM TrustZone

specification, vulnerabilities may occur [1] (Few vulnerable devices are shown in Table 2).

The contribution of this work is threefold. First, we present how ARM TrustZone works

and what are the main hardware components which assure that ARM TrustZone will be

secure.

Second, we evaluate and demonstrate a vulnerability caused by hardware implementation

which does not fully comply with ARM TrustZone hardware specifications. Third, we

argue that software configuration bugs in the low-level vendor implementation may

introduce vulnerabilities to the ARM TrustZone. Our attack is based on DMA Transaction

so it can be executed from a peripheral device like a controller, network card, etc… or

executed on the device itself using the DMA controller.

In our research we present how we gain full access to the secure world from the normal

world.

3

Table of Contents

1 Introduction ... 5

2 TrustZone Background ... 7

2.1 ARM Permission Model... 7

2.2 ARM TrustZone ... 7

2.3 OP-TEE .. 10

3 Related Work .. 13

4 The Attack – Return of the DMA ... 18

4.1 DMA Attack ... 18

4.2 Attack Goal .. 18

4.3 The Attack – “Trusted” Arbitrary Code Execution .. 20

4.4 Attack summary and vulnerable devices .. 22

5 Attack Evaluation.. 23

5.1 Raspberry PI ... 23

5.2 OP-TEE OS for Raspberry PI .. 25

5.3 Raspberry PI DMA... 26

5.4 The Attack – Evaluation on Raspberry PI .. 27

6 Mitigations .. 32

7 Summary and Conclusions ... 34

7.1 Summary .. 34

7.2 Future Work ... 35

8 Bibliography ... 37

 42 .. תקציר 9

4

List of Figures

Figure 1: Normal and Secure World ... 8

Figure 2: NS bit ... 9

Figure 3: Outline of ARM TrustZone ... 10

Figure 4: BCM2837 overview .. 24

Figure 5:Open Session function Flow... 27

Figure 6: ree_fs_ta_open Header signature validation ... 28

Figure 7: ree_fs_open TA size validation ... 28

Figure 8: ree_fs_ta_read decrypts a TA header .. 30

Figure 9: ree_fs_read validates the encrypted header against the hash of the plain header

... 30

 List of Tables

Table 1 List of vulnerable SoC ... 22

Table 2: Raspberry PI 3 Specifications ... 23

5

1 Introduction

The development of the Internet of Things (IoT) is hailed as the third wave of world

information development after computers and the Internet [2], with embedded systems as

the driving force for technological development in many domains, such as automotive,

healthcare, and industrial control in the emerging post-PC era. As an increasing number of

computational and networked devices are integrated into all aspects of our lives in a

pervasive and 'invisible' way, security becomes critical for the dependability of all smart or

intelligent systems built upon these embedded systems [3]. Embedded IoT products are

increasingly wireless. By their nature, such products are constrained in terms of computing

and memory capacity and what can be done given cost realities [4]. The constrained nature

of such devices means we are trying to 'build a fortress from pebbles', so to speak.

Therefore, we must take the very best security measures to prevent malicious activity on

those devices given the limited conditions, which often means cutting corners compared

with other resource-rich areas of computing (personal computers, servers, etc.). ARM

TrustZone [5] was introduced as part of the ARMv6 architecture and is widely used in

smartphones, tablets, wearables and other devices.

As TrustZone is becoming a popular hardware security architecture for mobile devices and

IoT, it is important to ensure the security of TrustZone itself [6]. Even though ARM

TrustZone is a great way to implement security mechanisms across IoT-embedded devices,

it is still prone to bad hardware and software implementations; thus, the hardware of

different companies like Google, Samsung, Huawei, etc. might still be affected by severe

vulnerabilities that compromise the entire security suite [7], [8], [9], [10]. Some ARM

modules lack AMBA AXI [11] support, which leads to insecure memory separation

between the Normal and Secure Worlds. In this paper, we present Direct Memory Access

6

(DMA) attack [12] on ARM TrustZone Trusted Applications (TA) running in Open

Portable Trusted Execution Environment (OP-TEE) [13], [14]. This allows an attacker to

execute arbitrary code in the Secure World or read arbitrary data from the secure world into

the rich OS. Our attack is a control-flow attack [15], [16] on the OP-TEE kernel.

In this paper, we show a hardware vulnerability on SoC that compromises ARM

TrustZone. Using DMA attack, we gain the ability to replace trusted applications with

malicious ones. We demonstrate an attack on a Raspberry PI computer and explain how

this method affects other platforms. This paper also provides measures to mitigate this

vulnerability.

7

2 TrustZone Background

2.1 ARM Permission Model

ARM has a unique approach to security and privilege levels. In ARMv7, ARM

introduced the concept of secured and non-secured worlds through the implementation of

TrustZone and starting from ARMv7a. ARM presents four exceptions (permission) levels

as follows.

Exception Level 0 (EL0) Refers to the user-space code. Exception Level 0 is analogous

to ”ring 3” on the x86 platform.

Exception Level 1 (EL1) Refers to operating system code. Exception Level 1 is

analogous to ”ring 0” on the x86 platform. Our attack demonstration starts from EL1 and

escalating to EL3.

Exception Level 2 (EL2) Refers to HYP mode. Exception Level 2 is analogous to ”ring -

1” or ”real mode” on the x86 platform.

Exception Level 3 (EL3) Refers to TrustZone as a special security mode that can

monitor the ARM processor and may run a real-time security OS. There are no direct

analogous modes, but related concepts in x86 are Intel’s ME or SMM.

Each exception level provides its own set of special purpose registers and can access

these registers at the lower levels, but not higher levels. The general purpose registers are

shared; therefore, moving to a different exception level on the ARM architecture does not

require the expensive context switch associated with the x86 architecture.

2.2 ARM TrustZone

ARM TrustZone technology is aimed at establishing trust in ARM-based platforms. In

contrast to a TPM (Trusted Platform Module), which is designed as a fixed-function

8

device with a predefined feature set, TrustZone represents a much more flexible approach

by leveraging the CPU as a freely programmable trusted platform module. To do that,

ARM introduced a special CPU mode called 'secure mode' in addition to the regular

normal mode, thereby establishing the notions of a 'Secure World' and a 'Normal World'

(Figure 1). The distinction between these worlds is completely orthogonal to the normal

ring protection between user-level and kernel-level code, and hidden from the operating

system running in the Normal World [17].

Figure 1: Normal and Secure World

As an example, the Linux kernel runs in EL1 and the user-space processes execute in

EL0. The separation of Secure and Normal World secures certain RAM ranges and

peripherals, which are only accessible by the Secure World. This means that a

compromised Normal World code (in the user-space or the kernel) cannot access these

memory ranges or devices. This separation is completely artificial. The same cores are

used to run both Secure and Normal Worlds and they use the same RAM (Figure 2).

9

Figure 2: NS bit

The Non-Secure (NS) bit is used to determine whether the CPU executes in Normal or

Secure World context to create a separation in memory. TrustZone technology extends

beyond the processor into the SoC peripherals connected with the SoC, such as the

DRAM controller (Figure 2), the DMA (Direct Memory Access), the secure boot ROM,

the GIC (Generic Interrupt Controller), the DMA (Direct Memory Access), the secure

boot ROM, the GIC (Generic Interrupt Controller), the TrustZone Address Space

Controller (TZASC), the TrustZone Protection controller (TZPC) and the Dynamic

Memory Controller (DMC).

The above components communicate through the AXI bus and the SoC communicates

with peripherals through the AXI to APB bridge. The SoC peripherals are implemented

by third-party companies; therefore, to reduce costs, some vendors choose not to comply

entirely with TrustZone specifications. It is possible to access the entire memory from the

Secure World but not vice versa. The Secure Monitor Call (SMC) instruction is used to

traverse to the Monitor in EL3. The SMC depends on the manufacture implementation

and, thus, is prone to bugs and other vulnerabilities [10]. This paper focuses on the

physical level of memory isolation. TrustZone enables memory partitions between

Normal and Secure Worlds by using the TZASC and the TZPC. This provides a secure

10

I/O to peripherals over standard interfaces. For instance, the SPI or GPIO route interrupts

to the TEE kernel (Secure World kernel) through the TZPC. The NS bit is used to secure

on-chip peripherals from the Rich Execution Environment (REE, Normal World) [18].

TZASC utilises the NS bit for a memory-mapped device like DRAM. These two devices

require support from the AXI bus, which is vendor-specific. TrustZone use cases include

building a root-of-trust for the system with everything needed for a secure boot and

system recovery.

Secure World trusted applications may be used for secure PIN and biometric checks to

ensure details are safe from hacking. Another trusted application use case is Digital Right

Management (DRM) for online media, where the private information is kept within the

Secure World so hackers cannot access the keys required to reverse-engineer the system.

Many more use cases of TrustZone can be found for IoT and mobile devices [19].

2.3 OP-TEE

Figure 3: Outline of ARM TrustZone

OP-TEE [13] is a Trusted Execution Environment (TEE) designed as a companion to a

non-secure Linux kernel running on ARM Cortex-A cores using the TrustZone

11

technology. OP-TEE implements TEE Internal Core API v1.1.x, which is the API

exposed to Trusted Applications and the TEE Client API v1.0, which is the API

describing how to communicate with a TEE. These APIs are defined in the

GlobalPlatform API specifications. The non-secure OS is referred to as the Rich

Execution Environment (REE) in TEE specifications.

OP-TEE is designed primarily to rely on the ARM TrustZone technology as the

underlying hardware isolation mechanism. However, it has been structured to be

compatible with any isolation technology suitable for the TEE concept and goals, such as

running as a virtual machine or on a dedicated processor core. The main design goals for

OP-TEE are:

• Isolation - OP-TEE provides isolation from the non-secure OS and protects the loaded

Trusted Applications (TAs) from each other by using underlying hardware support.

• Small footprint - OP-TEE should remain small enough to reside in a reasonable

amount of on-chip memory as found on ARM-based systems.

• Portability - OP-TEE is aimed to be pluggable to different architectures and must

support various setups such as multiple client OSs or multiple TEEs.

OP-TEE offers threads and shared memory among the REE to the secured OS, Secured

interrupts, RPC from the secured to the REE and communication from the REE to the

Secured World via the SMC interface where some are possible attack vectors. For

instance, consider an attack on the SMC interface. It is possible to replace the SMC

interface from the REE side with malicious code that hijacks the SMC requests in the

non-secure side, for example, by manipulating the kernel code itself by a DMA attack. It

is also possible to attack the shared-memory in cases when it is used. TrustZone-

protected DRAM or non-secure DRAM is used as the backing store. The data in the

backing store are protected with a hash. However, read-only pages are not encrypted

12

because the OP-TEE binary itself is not encrypted. Therefore, a DMA attack on the OP-

TEE kernel is easier than on TA-encrypted programs as it bypasses the MMU

permissions model as well as the need to encrypt the code. Each TA is encrypted with a

private key. The vendor creates a public key that is used to decrypt the TA. The

decryption takes place in OP-TEE in the TrustZone. Thus, the program in its decrypted

form is only visible in the Secured RAM and the processor's EL3 cache. It is, therefore,

sensible to attack in the decryption area.

13

3 Related Work

Many words were written on side-channel attacks and other vulnerable targets in ARM

architecture in prior research. In the area of ARM, [8] et al. describe a downgrade or

rollback attack. A trusted application is encrypted for security purposes by public and

private keys that originate from the hardware. In cases when the system is updated, old

TAs can still be executed on the new system. A downgrade attack is when an attacker

exploits a vulnerability in the old TA version by patching the old version onto the new

TA version. According to [8], the above applies to the OP-TEE and QSEE (Qualcomm's

Secure Execution Environment). [8] et al. describe a simple procedure for mobile phones:

root the device, remount the 'system' partition in READ-WRITE mode, replace the

current trustlet with an old vulnerable trustlet and use the trustlet. [8] et al. describe

another possible rollback attack on the chain of trust and proves it possible to downgrade

the bootloader successfully.

Armageddon [20] et al. explore attacks on ARM caches, concentrating on cross-core

cache attacks in non-rooted arm mobile devices and showing a novel approach to exploit

the coherence protocols. Although most smartphones have multiple processors that do not

share caches, cache coherence protocols allow processors to fetch cache lines. By

exploiting the lack of ‘cache flush’ on 'old' ARM cores (before ARMv8), a novel

technique that analyses cache eviction strategies and another approach on how to perform

cycle-timing without root access. Armageddon [20] et al. provide a technique to gain

sensitive information such as inter-keystroke timings or the length of a swipe action

requiring significantly higher measurement accuracy. As for TrustZone vulnerability,

Armageddon [20] shows a cache attack used to monitor cache activity caused within the

ARM TrustZone from the Normal World.

14

Flush and Reload attack [21] et al. take advantage of the coherence protocol in a

multiprocessor computer. In most ARM processors, the last level cache is inclusive (i.e. it

includes low-level cache lines); therefore, examining the content of the last-level cache

may provide the contents of low-level cache lines of another core. However, the

AutoLock [22] tool assesses the real risk in cache attacks, prevents cross-cache evictions,

and highlights the intricacies of cache attacks in ARM. AutoLock [22] et al. claim that

unlike Intel processors, many ARM caches are both inclusive and exclusive, and

therefore hardens the LLC (last-level cache) attacks. In their work, Demme et al. [23]

demonstrate that small changes to the cache architecture have a considerable impact on

side-channel vulnerability. Like cache attacks, DMA attacks are continuously under

research. [24] et al. show that by dumping memory frequently enough using DMA

transactions, write patterns can be examined, and some algorithms, such as the RSA

Montgomery ladder [25] , may leak secrets. DAGGER [26], a DMA-based keystroke

logger, exfiltrates captured data to an external entity and cannot be detected by anti-virus.

[26] shows how DAGGER can steal cryptographic keys, target OS kernel structure, and

copy files from the file cache on Linux and Windows through DMA malware, even if the

memory addresses are random. [26] et al. also offer countermeasures to detect DMA

attacks. [27] et al. integrate DMA attacks through FireWire into Metasploit [28] for

payload selection, session control, etc. and attack via DMA over Firewire.

TRESOR-HUNT [29] relies on the insight that DMA-capable adversaries are not

restricted to simply reading physical memory but can write arbitrary values to memory as

well. Hard disk encryption keys were considered safe if not saved on the RAM, but

TRESOR-HUNT [29] injects malicious code to the kernel using DMA attack and then

extracts disk encryption keys from the CPU into the target system's memory from which

they can be retrieved using a normal DMA transfer. [30] et al show that an adversary

15

with physical access to a device, could impersonate the device's memory controller, by

attaching a malicious memory controller to the exposed pins of each DIMM socket of

RAM and, by doing so, an attacker would have full access (READ/WRITE) to the target

memory. Duflot et al. [31] introduce the vulnerability of remote code execution on a

network adapter and how it could compromise the system-running kernel using DMA

attack. BROADPWN [32] is a novel approach of privilege escalation. From exploiting a

bug in Broadcom WiFi chip into DMA attack on the main processor of the device. The

emerging of cache, DMA, and hardware attacks shows that not only software bugs can

impose security risks but also hardware implementation bugs are becoming more

common, specifically when new features rely on old security assumptions. [1] et al.show

that because ARMv7 (the ARM debugging model) requires no physical access, a low-

privilege host can use ARM debugging features to gain read/write access to TrustZone

Secure World. Because there is no hardware privilege access control, a low-privilege host

can initiate a debug session with a high-privilege target using ARM debugging features.

[1] et al.use ARM debugging features to leak private keys from the Secure World, thus

compromising ARM TrustZone security. The hardware implementation bugs of ARM

debugging features affect development boards, IoT devices, and mobile devices. Defense

against these vulnerabilities requires hardware and software solutions like the

vulnerability we found. [1] et al.suggest that ARM should add restrictions in the

interprocessor debugging model to enforce permission between host and target. SoC

vendors should refine debug signal management, and add support to disable only inter-

processor debugging. OEMs should add software-based access control to go with the

hardware permission model. Matt Spisak et al. [33] describe another processor feature-

based attack using ARM CoreSight debug features. [33] et al.leverage ARM PMU

(Performance Monitoring Unit) to create a rootkit that cannot be detected by the kernel

16

monitor because it does not change the kernel syscall but rather attaches through the

PMU to any syscall. Thus, every syscall will raise a PMU event, and the rootkit would be

able to modify the input and output data of the syscall. This attack is possible due to a

hardware implementation bug of a debug signal authorization that enables debug features

in the hardware. [34] et al.suggest a different approach where the code and data that need

to be protected are kept only in EL2 [35] (HYP mode) instead of in the TrustZone, where

there is a strong coupling between vendor-specific code and hardware implementation; in

which case, EL1 and EL0 will not have access to this code. Cloaker [36] et al.leverage

ARM architecture System Control Register (SCTLR) to move the exception vector table

(EVT) from high to low address so that mapping a malicious EVT at address 0x0 would

intercept all exceptions.

Much is found in the literature on control-flow integrity (CFI). [37] et al.present the

kernel CFI used to protect the kernel's stack and heap. A flaw in the kernel may allow

user processes to write to kernel-space. Therefore, processor vendors presented the NX

(Never Execute) bit that thwarts execution from the kernel's data portions. However, the

execution segments were still writable and vulnerable to exploits. This led to making the

kernel execution part read-only. But this also was not enough, as all of the user-space

portion could be both written to and executed via a kernel exploit. To probity this, Intel

created the supervisor mode execution prevention (SMEP) and ARM privileged execute

never (PXN) bit. These features restrict the kernel from executing user-space memory

while in kernel mode. This led attackers to target the stack, mainly manipulating the

return addresses kept on the stack. This type of attack is referred to as 'return-oriented

programming' (ROP) attacks. ROP attacks manipulate indirect calls, i.e. function

pointers. These attacks concentrate on the calling (forward edge) and returning (backward

edge) of a function. Thus, the main purpose of CFI is to try to ensure that forward edges

17

go to the expected addresses and that the backward edges are not changed. CFI is

implemented through the Clang compiler extensions and utilizes link-time optimization

(LTO) to examine the entire kernel code. Functions are classified according to their

signature and checked in runtime. Another mechanism is kCFI, which narrows the

classification of the edges. Thus, to use this feature, OP-TEE must be compiled with

Clang and then apply kFCI on it. Unfortunately, none of these defenses thwart a DMA

attack. In the area of thwarting hypervisor CFI attacks, [38] et al. offer Hypersafe.

Hypersafe is used to protect the hypervisor from CF hijack attack through a memory

lockdown and restricts pointer indexing, a layer of indirection that converts the control

data into pointer indexes. These pointer indexes are restricted such that the corresponding

call/return targets strictly follow the hypervisor control flow graph, hence expanding

protection to control-flow integrity. This mitigation reduces the ease of performing a

DMA attack on the hypervisor and, combined with IOMMUs, DMA attacks can be

entirely mitigated.

18

4 The Attack – Return of the DMA

4.1 DMA Attack

Direct Memory Access (DMA) allows I/O devices to access the memory. DMA has

evolved since its inception, when a single DMA controller was set in a computing

system. Following the introduction of many high-speed I/O peripherals, devices started to

incorporate DMA engines that enabled them to initiate DMA transactions without the

coordination of a central DMA controller. ARM implements the advanced

microcontroller bus architecture (AMBA), an open standard for on-chip interconnect

specification. DMA transactions connect through the DMA controller to the on-SOC

AMBA AXI Bus (AMBA advanced extensible interface) and the AMBA AXI Bus

supports TrustZone NS-bit. The DMA controller can handle secure and non-secure events

simultaneously, with full support for interrupts and peripherals. Examples of DMA

devices are graphic cards, network adapters, FireWire, ThunderBolt, etc.

Although DMA is essential for fast I/O transactions, it also opens new vulnerabilities to

DMA attacks [12], [29], [35]. This paper demonstrates a DMA attack on a poorly

implemented TrustZone hardware architecture; without an SMMU (System Memory

Management Unit) or ARM TZASC/TZPC and AXI-bus NS bit support, the system

cannot prevent a DMA-capable device like Firewire/Thunderbolt from accessing the

RAM.

4.2 Attack Goal

The secured memory is accessible through DMA transactions. Through this vulnerability,

the TrustZone can be exploited. We escalate privileges by reading data from the Secure

World.

19

Through this attack, we inject code to the Monitor in EL3, thus executing malicious

programs in the Secure World operating system (the Secure World kernel). This offers us

to bypass any validation of the secure operating system and also makes it possible to

patch the EL1 kernel and execute arbitrary code.

20

4.3 The Attack – “Trusted” Arbitrary Code Execution

Attack primitive is based on Write What Where vulnerability achieved using DMA

transactions and overriding the code in the RAM. We use this vulnerability to show that

we can gain access to execute arbitrary code in the OP-TEE OS, thereby bypassing OP-

TEE OS trusted application signature validation and gaining control of every trusted

application in the system. Our approach is to change the return values of key functions

without changing the stack. This technique impedes CFI tools such as gcc stack guard

[36] or Clang [32] kFCI to detect our attack. Trusted applications are located on the REE

file-system because this file-system usually contains more memory; by using this file-

system, it is easier to update those applications. The trusted applications are built

separately from the trusted operating system (similar to Linux kernel and user-space

applications in the Normal World) and are signed with a private key from the

manufacturer of the device application (e.g. Samsung sign their trusted applications with

their private key). Common usages of trusted applications are DRM validations, HMAC

(keyed-hash message authentication code) based one-time password, AES encryption and

more. Using the trusted applications, the manufacturer of the device can make sure a

compromised user or kernel will not break the integrity of the device. When the

manufacturer wants to update a trusted application, they sign the new version with the

same private key and distributes it to the users. When the Secure World OS executes a

trusted application, if the signature is invalid, then a security error will occur and the

program will not run. In our attack, we first use a DMA attack in order to read memory

pages from the RAM. DMA attacks can be initiated from peripheral devices such as

FireWire, PCI-connected devices (Network cards, GPU, etc.) as demonstrated by [28],

[29], [12]. DMA attacks can also be initiated from the CPU if the CPU can access the

21

DMA controller. After reading memory pages from the RAM, we analyse the memory

and compare it to ARM Trusted Firmware in order to locate similar functions. (Most of

TrustZone software implementations are based on ARM Trusted Firmware, which makes

reverse-engineering of the code simpler.) Moreover, there are some major vendors' secure

OS (Trusted Execution Environment) in the market (QSEE, OPTEE) and we compare our

memory dump to the compiled versions of those; by doing so, we can find the functions

that validate trusted application signatures. Because none of the widely used TEE OS

uses Address Space Layout Randomisation (ASLR) [37] we can use the address from our

memory dump to override trusted applications signature validations with a DMA attack.

After doing so, we can just replace any TA with our own malicious TA. Even though we

do not know the correct signature private key, the TEE OS will succeed to validate our

malicious TA.

22

4.4 Attack summary and vulnerable devices

Using the above method, it is possible to bypass the TA validation by replacing the

signature key itself or by patching the validation function so there is no need to sign the

TA at all. Using DMA attacks on the TrustZone gives a wide range of attack possibilities.

In this paper, we show the usage of DMA attack to perform ACE (Arbitrary Code

Execution); however, it is also possible to use this method to read arbitrary code from

physical memory whereby a malicious user can access sensitive data. We also show that

hardware implementation bugs are common even on security features like ARM

TrustZone.

Table 1 List of vulnerable SoC

Manufacturer SoC Device

Texas Instrument CC2538 Sensibo

HISILICON Hi3518EV200 Security Cameras

HISILICON Hi3519V101 Security Cameras

Amlogic Meson3 Wifi Network Speaker

ST STM32 Smart Vaccums

Table 2 presents a few SoCs of real IoT devices that lack some TrustZone hardware, but

support TrustZone in the ARM Core, thus making the TrustZone 'untrusted'. One can

claim the devices using this SoC do not use TrustZone at all; However, if this were the

case, then those devices would not be using all the security options given to them, thus

introducing architecture security flaws [38] [39] [40].

23

5 Attack Evaluation

5.1 Raspberry PI

Raspberry PI is a low-cost computer with wide range of uses, from its original target

market of education to robotics, research projects and IoT devices (weather monitoring,

smart home, smart camera, WIFI range extender and many more).

We use a Raspberry PI3 Model B to demonstrate the attack. The Raspberry PI3 Model

B’s main specifications are shown in Table 1.

Table 2: Raspberry PI 3 Specifications

SoC Broadcom BCM2837

CPU 4 cores, ARM Cortex A53, 1.2GHz,

(clocked to 700MHz)

RAM 1GB LPDDR2 (900 MHz)

Clock 19.2 MHz

24

Figure 4: BCM2837 overview

Figure 4 presents the BCM2837 chip. This Broadcom SOC supports TrustZone and

DMA transactions through the AMBA (Advanced Microcontroller Bus Architecture)

AXI (Advanced Extensible Interface). As mentioned earlier, not all TrustZone cores

comply with the entire hardware specifications. Figure 4 shows that the BCM2837 has

the correct AXI bus, but it lacks the TZASC and TZPC, making it vulnerable to DMA

attacks.

25

5.2 OP-TEE OS for Raspberry PI

OP-TEE supports Raspberry PI 3 Model B. The ARM Trusted Firmware is the basis for

implementing Secure World software for the ARM A-Profile architectures (ARMv8-A

and ARMv7-A), including an Exception Level 3 (EL3) Secure Monitor.

The (SMC) Secure Monitor Call instruction is used to invoke functions between the

Normal World and the Secure World through the Secure Monitor (Figure 3). ARM

Trusted Firmware for the Raspberry PI provides a suitable starting point for the

productization of Secure World boot and runtime firmware [41]. When a vendor uses OP-

TEE on any hardware in general, and on Raspberry PI specifically, they will most likely

use a trusted application in order to implement hardware security measures and secure

their devices [42].

All real-world environment file-system trusted applications need to be signed. The

signature is verified by OP-TEE OS upon loading of the TA. Within the OP-TEE OS

source is a directory key. The public part of the key (public key) will be compiled into the

OP-TEE OS binary and the signature of each TA will be verified against this key upon

loading using an RSA signature scheme [43]. A vendor must sign his trusted application

with a private key; thus, if a malicious party tries to change the trusted applications on the

file-system, the OP-TEE OS will return a security error and will not execute the

malicious trusted application.

Without this mechanism, a malicious party would be able to alter trusted applications

code, which will gain them access to the TrustZone security storage.

When a vendor updates a trusted application, they sign the new TA with their private key.

OP-TEE OS contains the public key, thereby validating the TA. In this paper, we present

a way to bypass this mechanism and execute our own 'trusted' applications.

26

5.3 Raspberry PI DMA

The DMA controller can be configured through the CPU as well as an external device.

Therefore, we chose to perform this attack through the CPU. We authored a Linux kernel

module to perform the DMA transactions. This module maps the DMA controller and

configures the DMA control block to initiate DMA transactions.

In OP-TEE's Linux kernel, the DMA controller address space is not available to the user-

space. However, it is plausible to assume that an IoT device, for example, will enable this

device for peripherals access.

We argue an attack is possible in many IoT devices and we will show the following

scenarios:

1. Some IoT devices mapping physical memory to the user-space to increase

performance and save kernel access that may lead to DMA controller access.

2. Linux-based devices (IoT devices, routers, etc.) do not update their kernel

versions very often due to compatibility issues and the large number of devices.

Thus 'one day's' vulnerability can be used to exploit the device and gain root

access to perform actions on the DMA controller [44] [45].

3. Attack peripheral device (Bluetooth/WIFI chip, SSD controller, etc…) to perform

malicious DMA transactions [46], [47], [48].

All those scenarios may lead to a DMA attack and, on some devices, to a TrustZone

vulnerability.

[49] presents the Control Block structure of a DMA and the DMA Controller registers in

the Raspberry PI. To initiate a DMA transaction, we first set the Control Block structure

and then set CONBLK_AD in the DMA controller structure. We perform two types of

DMA transactions:

27

1. Set SOURCE_AD to the Secure World physical address in order to read data of

the Secure World.

2. Set DEST_AD to the Secure World physical address in order to write malicious

code to the Secure World, thereby achieving arbitrary code execution.

5.4 The Attack – Evaluation on Raspberry PI

In OP-TEE environment. Trusted applications are signed with the key from the build of

the original OP-TEE core blob. Trusted applications consist of a signed ELF header,

named from the UUID of the trusted application (set during compilation time) and the

suffix “.ta”. When a trusted application is replaced in the REE file-system with the new

one, the signatures and UUID are validated by the OP-TEE OS (Figure 5).

Figure 5:Open Session function Flow

Invoking a trusted application function from the Normal World requires the use of SMC

(Secure Monitor Call). SMC is used to communicate between the Normal World and

Secure World. SMC is initiated by the kernel (EL1) to reach the EL3 monitor.

28

OP-TEE provides a Linux kernel driver to interact with the OP-TEE in TrustZone. For

instance, PTA_SYSTEM_OPEN_TA_BINARY function is accessed by this driver to the

OP-TEE OS in the Secure World. PTA_SYSTEM_OPEN_TA_BINARY calls system

open_ta_binary, which looks for the user-trusted application ELF by the UUID in the

storage (file-system).

After finding the trusted application ELF in the REE file-system, the OP-TEE OS loads

the ELF header and maps the trusted application sections into the secure memory using

PTA_SYSTEM_MAP_TA_BINARY. After loading the trusted application, the user is able

to invoke the trusted application functionality through the OP-TEE Linux kernel driver.

We focus on two functions: ree_fs_ta_open and ree_fs_ta_read called by PTA

SYSTEM_OPEN_TA_BINARY and PTA_SYSTEM_MAP_TA_BINARY respectively.

Trusted applications binaries contain a signed header so that a malicious user cannot

replace the trusted applications. If a malicious user replaces a trusted application, then

OP-TEE OS returns a security error when it tries to execute those trusted applications.

In order for OP-TEE OS to validate those signatures, as a trusted application executes,

the function ree_fs_ta_open loads the trusted application header, validates the application

header signature (Figure 6), and validates its size (Figure 7).

1. /* Validate header signature */
2. res = shdr_verify_signature(shdr);
3. if (res != TEE_SUCCESS)
4. goto error_free_payload;

Figure 6: ree_fs_ta_open Header signature validation

1. if (ta_size != offs + shdr->img_size) {
2. res = TEE_ERROR_SECURITY;

3. goto error_free_hash;

4. }

Figure 7: ree_fs_open TA size validation

29

When OP-TEE OS maps the TA into the secure memory, it loads the application to the

memory using ree_fs_ta_read, which validates the encrypted trusted application

signature (Figures 8 and 9).

30

1. if (handle->shdr->img_type ==

SHDR_ENCRYPTED_TA) {

2. /*
3. * Last read: time to finalize

authenticated

4. * decryption.
5. */
6. res = tee_ta_decrypt_final(handle-

>enc_ctx,handle->ehdr, NULL, NULL, 0);

7. if (res != TEE_SUCCESS)
8. return TEE_ERROR_SECURITY;
9. }

Figure 8: ree_fs_ta_read decrypts a TA header

1. /*
2. * Last read: time to check if our digest

matches the expected

3. * one (from the signed header)
4. */
5. res = check_digest(handle);
6. if (res != TEE_SUCCESS)
7. return res;

Figure 9: ree_fs_read validates the encrypted header against the hash of the plain header

In the first step, we reverse-engineered OP-TEE OS (using radare2 [50]) in order to

find key opcodes of both functions to exploit (Figures 6 - 9). We need to perform this

step one time, because there is no ASLR we know the address of the opcode in each

boot of the system. On different SoC we need to perform reverse-engineering method

again just to find the relevant addresses. We used DMA transactions to read chunks

of physical RAM in order to find the opcodes that match the functions above. Once

we located the opcodes in the memory and noticed that these functions load in the

same location in physical memory every time. We used DMA transactions to override

the return values of the validations mentioned above (Figure 6 - 9), thereby gaining

the ability to compile our own trusted application, sign it with an arbitrary key and

execute it on the machine. We replaced two types of opcodes: the comparison opcode

of w0 register was replaced with cmp w0,w0 so it always returned true and, when

moving the return value of the function to w0 register, we replace this command with

31

eor w0,w0,0 so the value of w0 register would be 0, again having the return values of

the validation functions equal true.

We were able to perform this replacement using just a simple DMA transaction with

the control block DEST_AD set to the physical address of the opcodes we found; all

of which constitute in the Secure World memory. Because Raspberry PI does not

support physical bus Secure World separation, we used a DMA transaction to replace

the correct opcodes with our malicious opcodes.

The trusted applications binaries are on the REE file-system and, thus, can be over-

written; however, the OP-TEE OS will never execute a replaced TA when the

signature does not match.

Faking a matching signature requires finding a private key of 2048-bit that matches

the public key; therefore, only the owner of the key would be able to replace those

applications. In our case, we compiled a new TA with the same UUID of the original

one and put it in the file-system location. By executing our malicious TA, we gained

the ability to manipulate ARM TrustZone to execute invalid signed binaries.

For example, we compiled a fake AES TA (given in the examples of the OP-TEE

suite) that encrypts data with our malicious key. Thus, every time the user uses this

TA to perform AES, the data will not be truly encrypted with a secret key.

32

6 Mitigations

When choosing a SoC for a device you must compare the device requirements to the

features the SoC contains. In our case when choosing a SoC we want to make sure the

SoC architecture has all the chips required for ARM TrustZone to work properly

(TZASC, TZPC, supported bus, etc…). The process of checking the SoC architecture is

not always easy and surely not automatic, because not all vendors publish their SoC

architecture.

We suggest for SoC vendors to be more transparent about their architecture when it

comes to security features. We also suggest manufacturers to ensure that their SoC

hardware supports not only TrustZone ARM Core but also TrustZone specification.

In cases where a fully compatible TrustZone is not available (Lack of hardware on the

SoC which makes the TrustZone secure), we list other protection techniques:

• Using SMMU (similar to IOMMU on Intel x86) to configure specific addresses for

DMA controllers. SMMU works as MMU for BUS access, so any memory access

through the BUS would have to be matched to the permission configured to the accessed

address. With SMMU and a correct configuration a DMA attack through peripheral will

not be possible. It is also important to note a kernel attacker could change this

configuration.

• In the case of Raspberry PI, by disabling the DMA controller, a non-privileged user or

peripheral would not be able to use DMA transactions.

• Set the Secure World on a different RAM without DMA controller mapping so there is

no physical interface between the Normal and Secure Worlds.

A software protection would be to encrypt parts of the OP-TEE code itself, mainly the

TA decipher functions. Only when these functions are used, OP-TEE will decrypt the

33

functions into the cache, validate the TA, and evict the cache. This method was

introduced by [24]. Using this method an attacker would have to time his attack in order

to get the code from the RAM. Combine this method with ASLR and HALT the other

cores and this attack will be mitigated.

34

7 Summary and Conclusions

7.1 Summary

We live in an era of ever-growing IoT devices and connectivity demands. Connectivity

between our home, cars, smartphones, etc… impose privacy risk in case of

vulnerabilities. Those privacy risks impose a great threat to our day to day life, from

digital impersonating, data/money stealing, and more.

To mitigate those risks IoT/Smartphone devices vendors invest more and more in security

mechanisms. In particular, hardware-supported security mechanism, for instance, ARM

TrustZone, which allows running secure applications and using secure storage so normal

world vulnerability (kernel or user space) won’t cause leakage of secure information, for

instance, encryption keys of encrypted on-device-data.

Since ARM TrustZone is not a single chip but rather an entire architecture, many ARM

SoC manufacturers (Huawei, Broadcom, Qualcomm, etc…) may introduce vulnerability

to their SoC which will compromise the entire TrustZone security suite. Zhenyu Ning and

Fengwei Zhang, et al. [1] showed how manufacturers fault implementation of debug

signals impose vulnerability which gives access from normal world to the secure world

and compromises ARM TrustZone security. In our approach we assembled a malicious

DMA transaction to read data from the secure world such as encryption keys so

encrypted on-device-data become compromise. Also using DMA transaction, we gain

privilege to execute malicious code in the secure world, so we bypass trusted OS

signature validations and by doing so we obtain full control on the trusted applications.

Our attack let us create a malicious trusted application that can impersonate to a valid

one, even though our application signature will not match, by changing 4 opcodes. Using

35

the DMA transaction, we manage to bypass those validations. We evaluate our attack on

Raspberry PI 3 model B, and we show how we maliciously replace AES key generator

trusted application to return a key. Such that every use of this trusted application is

compromise and we could maliciously decrypt all the data encrypted with this key. Our

main contribution is to show that even though we have an architecture which supports

hardware security features it is still responsibility of the developers to make sure this

architecture meets the security standard of ARM and making sure they configure the

secure memory regions correctly. It is important to note that our attack can work on

devices such as i.MX53 even though the TZASC component is part of the architecture

because both peripherals IPU and GPU share the same DMA channel so if the IPU can

access the secure world, the GPU can access the secure world also.

Making sure a device does not have TrustZone hardware related vulnerabilities requires

comprehensive design review. We call SoC manufacturer to invest more in their design

reviews and developers to make sure to configure the secure world properly.

7.2 Future Work

In this work, we present an attack vector on ARM TrustZone secure world caused by

hardware architecture vulnerability or misconfiguration of secure memory regions. This

work can be further extended in several directions:

1. Scope expansion. In this work, we focus on hardware architecture vulnerability

but due to lack of software configuration validations in the TrustZone it is

common to find software misconfiguration of the secure world memory.

2. Hardware Vulnerabilities in ARM TrustZone architecture. In this work we

mainly focus on the lack of TZASC component. Relying on previous work of

Zhenyu Ning and Fengwei Zhang et al. [1] and Matt Spisak et al. [34] we can use

36

different approaches by leveraging ARM debug features to enable DMA attack

vectors on the TrustZone on different platforms. Those attack vectors will not

require a lack of component in the hardware design.

37

8 Bibliography

[1] Z. Ning and F. Zhang, "Understanding the security of arm debugging features," in

2019 IEEE Symposium on Security and Privacy (SP), 2019.

[2] M. Zhang, Q. Zhang, S. Zhao, Z. Shi and Y. Guan, "Softme: A software-based

memory protection approach for tee system to resist physical attacks," Security and

Communication Networks, vol. 2019, 2019.

[3] D. Papp, Z. Ma and L. Buttyan, "Embedded systems security: Threats,

vulnerabilities, and attack taxonomy," in 2015 13th Annual Conference on Privacy,

Security and Trust (PST), 2015.

[4] J. Leonard, Why TrustZone Matters for IoT.

[5] "ARM TrustZone," [Online]. Available: https://developer.arm.com/ip-

products/security-ip/trustzone.

[6] S. Zhao, Q. Zhang, Y. Qin, W. Feng and D. Feng, "Minimal Kernel: An Operating

System Architecture for {TEE} to Resist Board Level Physical Attacks," in 22nd

International Symposium on Research in Attacks, Intrusions and Defenses ({RAID}

2019), 2019.

[7] D. Shen, "Exploiting TrustZone on android," Black Hat USA, 2015.

[8] Y. Chen, Y. Zhang, Z. Wang and T. Wei, "Downgrade attack on trustzone," arXiv

preprint arXiv:1707.05082, 2017.

[9] S. Makkaveev, The Road to Qualcomm TrustZone Apps Fuzzing.

[10] J. Guilbon, Attacking the ARM's TrustZone.

[11] "About the AXI TrustZone memory adapter," [Online]. Available:

https://developer.arm.com/docs/dto0017/a/about-the-axi-trustzone-memory-adapter.

[12] G. Kupfer, D. Tsafrir and N. Amit, "IOMMU-resistant DMA attacks," 2018.

[13] "Open Portable Trusted Execution Environment," [Online]. Available:

http://www.op-tee.org/.

[14] C. Göttel, P. Felber and V. Schiavoni, "Developing secure services for IoT with OP-

TEE: a first look at performance and usability," in IFIP International Conference on

Distributed Applications and Interoperable Systems, 2019.

38

[15] L. Davi, P. Koeberl and A.-R. Sadeghi, "Hardware-assisted fine-grained control-

flow integrity: Towards efficient protection of embedded systems against software

exploitation," in 2014 51st ACM/EDAC/IEEE Design Automation Conference

(DAC), 2014.

[16] M. a. S. R. Zhang, "Control flow integrity for COTS binaries," 22nd USENIX

Security Symposium USENIX Security 13, pp. 337-352, 2013.

[17] "A Technical report on TEE and ARM TrustZone," [Online]. Available:

https://community.arm.com/developer/ip-products/processors/b/processors-ip-

blog/posts/a-technical-report-on-tee-and-arm-trustzone.

[18] O. Blazy and C. Y. Yeun, Information Security Theory and Practice: 12th IFIP WG

11.2 International Conference, WISTP 2018, Brussels, Belgium, December 10–11,

2018, Revised Selected Papers, Springer International Publishing, 2019.

[19] B. Ngabonziza, D. Martin, A. Bailey, H. Cho and S. Martin, "TrustZone Explained:

Architectural Features and Use Cases," in 2016 IEEE 2nd International Conference

on Collaboration and Internet Computing (CIC), 2016.

[20] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice and S. Mangard, "Armageddon: Cache

attacks on mobile devices," in 25th {USENIX} Security Symposium ({USENIX}

Security 16), 2016.

[21] Y. Yarom and K. Falkner, "FLUSH+ RELOAD: a high resolution, low noise, L3

cache side-channel attack," in 23rd {USENIX} Security Symposium ({USENIX}

Security 14), 2014.

[22] M. Green, L. Rodrigues-Lima, A. Zankl, G. Irazoqui, J. Heyszl and T. Eisenbarth,

"AutoLock: Why Cache Attacks on {ARM} Are Harder Than You Think," in 26th

{USENIX} Security Symposium ({USENIX} Security 17), 2017.

[23] J. Demme, R. Martin, A. Waksman and S. Sethumadhavan, "Side-channel

vulnerability factor: A metric for measuring information leakage," in 2012 39th

Annual International Symposium on Computer Architecture (ISCA), 2012.

[24] R. B. Yehuda and N. J. Zaidenberg, "Protection against reverse engineering in

ARM," International Journal of Information Security, vol. 19, p. 39–51, 2020.

[25] S. Flur, K. E. Gray, C. Pulte, S. Sarkar, A. Sezgin, L. Maranget, W. Deacon and P.

Sewell, "Modelling the ARMv8 architecture, operationally: concurrency and ISA,"

in Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, 2016.

[26] G. Irazoqui, T. Eisenbarth and B. Sunar, "Cross processor cache attacks," in

Proceedings of the 11th ACM on Asia conference on computer and communications

security, 2016.

39

[27] D. J. Bernstein, "Cache-timing attacks on AES," 2005.

[28] M. van Dijk, S. K. Haider, C. Jin and P. H. Nguyen, "Advanced Power Side Channel

Cache Side Channel Attacks DMA Attacks".

[29] P. Stewin and I. Bystrov, "Understanding DMA malware," in International

Conference on Detection of Intrusions and Malware, and Vulnerability Assessment,

2012.

[30] R. Breuk and A. Spruyt, "Integrating DMA attacks in Metasploit," in Sebug:

http://sebug. net/paper/Meeting-Documents/hitbsecconf2012ams D, 2012.

[31] D. Kennedy, J. O'gorman, D. Kearns and M. Aharoni, Metasploit: the penetration

tester's guide, No Starch Press, 2011.

[32] J. Moreira, S. Rigo, M. Polychronakis and V. P. Kemerlis, "DROP THE ROP fine-

grained control-flow integrity for the Linux kernel," Black Hat Asia, 2017.

[33] Z. Wang and X. Jiang, "HyperSafe: A Lightweight Approach to Provide Lifetime

Hypervisor Control-Flow Integrity," in 2010 IEEE Symposium on Security and

Privacy, 2010.

[34] M. Spisak, "Hardware-Assisted Rootkits: Abusing Performance Counters on the

ARM and X86 Architectures," 10th USENIX Workshop on Offensive Technologies

WOOT 16, 2016.

[35] E.-O. Blass and W. Robertson, "TRESOR-HUNT: attacking CPU-bound

encryption," in Proceedings of the 28th Annual Computer Security Applications

Conference, 2012.

[36] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier, P. Wagle, Q.

Zhang and H. Hinton, "Stackguard: Automatic adaptive detection and prevention of

buffer-overflow attacks.," in USENIX security symposium, 1998.

[37] K. Cook, "Kernel address space layout randomization," Linux Security Summit,

2013.

[38] D. H. J. W. Christian Lesjak, "Hardware-Security Technologies for Industrial IoT:,"

IECON 2015-41st Annual Conference of the IEEE Industrial Electronics Society, pp.

002589--002595, 2015.

[39] P. L. X. X. X. G. S. Z. M. Y. T. J. Le Guan, "TrustShadow: Secure Execution of

Unmodified," Proceedings of the 15th Annual International Conference on Mobile

Systems, Applications, and Services, pp. 488--501, 2017.

[40] T. G. J. P. J. C. A. T. Sandro Pinto, "IIoTEED: An Enhanced, Trusted Execution

Environment for Industrial IoT Edge Devices," IEEE Internet Computing, vol. 21,

40

pp. 40-47, 2017.

[41] "ARM Trusted Firmware," [Online]. Available: https://github.com/ARM-

software/arm-trusted-firmware.

[42] A. Nehal and P. Ahlawat, "Securing IoT applications with OP-TEE from hardware

level OS," in 2019 3rd International conference on Electronics, Communication and

Aerospace Technology (ICECA), 2019.

[43] R. L. Rivest, A. Shamir and L. M. Adleman, Cryptographic communications system

and method, Google Patents, 1983.

[44] N. Hampton, "The working dead: The security risks of outdated linux kernel," 6

March 2017. [Online]. Available:

https://www2.computerworld.com.au/article/615338/working-dead-security-risk-

dated-linux-kernels/.

[45] J. Wallen, "Most IoT devices are an attack waiting to happen, unless manufactureres

update their kernels," 28 June 2017. [Online]. Available:

https://www.techrepublic.com/article/most-iot-devices-are-an-attack-waiting-to-

happen-unless-manufacturers-update-their-kernels/.

[46] Y.-A. P. G. V. O. L. Loic Duflot, "Can you still trust your network card?,"

CanSecWest, pp. 24--26, 2010.

[47] R.-P. Weinmann, "Baseband Attacks: Remote Exploitation of Memory Corruptions

in Cellular," WOOT, pp. 12--21, 2012.

[48] Intel, "The latest security information on Intel products," 6 9 2020. [Online].

Available: https://www.intel.com/content/www/us/en/security-center/advisory/intel-

sa-00266.html.

[49] in BCM2837 ARM Peripherals, 2012, pp. 40-41.

[50] "Libre and Portable Reverse Engineering Framework," [Online]. Available:

https://radare.gitbooks.io/radare2book/content/.

[51] J. Criswell, N. Dautenhahn and V. Adve, "KCoFI: Complete Control-Flow Integrity

for Commodity Operating System Kernels," in 2014 IEEE Symposium on Security

and Privacy, 2014.

41

42

 תקציר 9

ARM TrustZone בטוחה ריצה של המעבד. מציע סביבת נמצא ARM TrustZoneכחלק מהחומרה

מעבדי עם ברכיבים רחב סלולאריים, ARMבשימוש טלפונים ורכיבי IoTרכיבי כגון: ,embedded .

הפרטיות, ובחשיבות מידע לאבטחת במודעות גדילה המימשו ARMעקב המאפשר TrustZone-את

מאובטחות למערכת ואפליקציות זיכרון מאובטח להוסיף כגון ליצרניות צופן פעולות לבצע כדי זאת ,

כדי למנוע DRMיצירת מפתחות הצפנה, שמירת טביעת האצבע של המשתמש בזיכרון מאובטח, הגנת

 . גניבת מידע עם זכויות יוצרים וכו'..

 יכול לשפר את רמת האבט ARM TrustZone-למרות ש

גבוהות, הרשאות עם מתוקף מידע על ולהגן במערכת ה חה של החומרתי תלוי TrustZone-המימוש

עם כל הרכיבים הנלווים ARMלפי הארכיטקטורה של TrustZone-ועליו להטמיע את ה SoC-ביצרן ה

כגון ועוד... TZASC ,AXI-BUSלכך מהרכיבים תומך יותר או אחד מחסיר היצרן בהם במקרים

 שיפגעו בתכונות האבטחה שלו. TrustZone-עלולות להיווצר פגיעויות ב TrustZone-הנלווים ל

זו עבודה של איך התרומה מציגים אנו ראשית כדלקמן. רכיבי ARM TrustZoneהיא ומה עובד

המרכזיים של החומרה האבטחה שתכולות לכך שני ARM TrustZoneשדואגים אנחנו תישמרו.

למימוש מאובטח של ARMיצרניות שלא עמדו במפרט של מבצעים הדגמה של פגיעויות שנגרמות עקב

על TrustZone-ה מבוססת שלנו התקיפה .DMA למערכת היקפיים מרכיבים אותה לבצע שניתן כך

בעזרת גישה כגון: כרטיס רשת, כרטיס מסך וכו'..., אנחנו מראים גם שניתן לבצע אותה מהמעבד עצמו

שאחראי על ווידוא החתימה RAM-הקוד הרלוונטי ב התקיפה מורכבת מזיהוי . DMA Controller-ל

(פעולת (Trusted Applicationsשל האפליקציות הבטוחות דורש זיהוי הקוד ,reverse engineer אך

באותם משתמשים הרכיבים שרוב ב כיוון הפעלה הSecure World-מערכות פעולת ,-RE הופכת

ניתן בעזרת טרנזקצית פשוטה. לדרוס את הקוד שמוודא את חתימת האפליקציות DMAלאחר מכן

 המאובטחות.

המאובטחות והאפליקציות הזיכרון על מלאה שליטה להשיג איך נציג זה ריצה במחקר כדי תוך

ן נצייונציג ניצול פשוט של החולשה על חומרות שונות , בהרשאות נמוכות, נראה עד כמה החולשה נפוצה

 .פגיעים IoTרשימה של רכיבי

43

דר' של בהדרכתו בוצעה זו זידנברג עבודה של ונצר יהודה עזרתו בן מאוניברסיטת רז

 .יובסקולה, פינלנד

44

 המרכז הבינתחומי בהרצליה
ספר אפי ארזי למדעי המחשב -בית

 מחקרי מסלול - (.M.Scהתכנית לתואר שני)

 ARMתקיפה על

TrustZone על ידי ניצול

 חולשה חומרתית

 מאת

 רון שטיינרוד

 .M.Scכחלק מהדרישות לשם קבלת תואר מוסמך עבודת תזה המוגשת

 הרצליה זי למדעי המחשב, המרכז הבינתחומיבמסלול המחקרי בבית ספר אפי אר

1202 פברואר

