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Abstract 

ARM TrustZone offers trusted execution environment (TEE) embedded into the processor 

cores. ARM TrustZone has become widely used in ARM processor devices such as 

Smartphones, IoT devices and Embedded devices. Due to the increase of security 

awareness ARM implements the TrustZone mechanism which enables device 

manufacturers to add secure storage and secure applications to perform cryptographic logic 

like saving user fingerprint or DRM protection to prevent data leakage. 

While ARM TrustZone can improve the overall security of the device it depends on the 

vendor (Who manufacture the System-on-chip) to fully comply with ARM TrustZone 

specification. In the case where a vendor does not fully comply with ARM TrustZone 

specification, vulnerabilities may occur [1] (Few vulnerable devices are shown in Table 2). 

The contribution of this work is threefold. First, we present how ARM TrustZone works 

and what are the main hardware components which assure that ARM TrustZone will be 

secure. 

Second, we evaluate and demonstrate a vulnerability caused by hardware implementation 

which does not fully comply with ARM TrustZone hardware specifications. Third, we 

argue that software configuration bugs in the low-level vendor implementation may 

introduce vulnerabilities to the ARM TrustZone. Our attack is based on DMA Transaction 

so it can be executed from a peripheral device like a controller, network card, etc… or 

executed on the device itself using the DMA controller. 

In our research we present how we gain full access to the secure world from the normal 

world. 
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1 Introduction 

The development of the Internet of Things (IoT) is hailed as the third wave of world 

information development after computers and the Internet [2], with embedded systems as 

the driving force for technological development in many domains, such as automotive, 

healthcare, and industrial control in the emerging post-PC era. As an increasing number of 

computational and networked devices are integrated into all aspects of our lives in a 

pervasive and 'invisible' way, security becomes critical for the dependability of all smart or 

intelligent systems built upon these embedded systems [3]. Embedded IoT products are 

increasingly wireless. By their nature, such products are constrained in terms of computing 

and memory capacity and what can be done given cost realities [4]. The constrained nature 

of such devices means we are trying to 'build a fortress from pebbles', so to speak. 

Therefore, we must take the very best security measures to prevent malicious activity on 

those devices given the limited conditions, which often means cutting corners compared 

with other resource-rich areas of computing (personal computers, servers, etc.). ARM 

TrustZone [5] was introduced as part of the ARMv6 architecture and is widely used in 

smartphones, tablets, wearables and other devices. 

As TrustZone is becoming a popular hardware security architecture for mobile devices and 

IoT, it is important to ensure the security of TrustZone itself [6]. Even though ARM 

TrustZone is a great way to implement security mechanisms across IoT-embedded devices, 

it is still prone to bad hardware and software implementations; thus, the hardware of 

different companies like Google, Samsung, Huawei, etc. might still be affected by severe 

vulnerabilities that compromise the entire security suite [7], [8], [9], [10]. Some ARM 

modules lack AMBA AXI [11] support, which leads to insecure memory separation 

between the Normal and Secure Worlds. In this paper, we present Direct Memory Access 
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(DMA) attack [12] on ARM TrustZone Trusted Applications (TA) running in Open 

Portable Trusted Execution Environment (OP-TEE) [13], [14]. This allows an attacker to 

execute arbitrary code in the Secure World or read arbitrary data from the secure world into 

the rich OS. Our attack is a control-flow attack [15], [16] on the OP-TEE kernel.  

In this paper, we show a hardware vulnerability on SoC that compromises ARM 

TrustZone. Using DMA attack, we gain the ability to replace trusted applications with 

malicious ones. We demonstrate an attack on a Raspberry PI computer and explain how 

this method affects other platforms. This paper also provides measures to mitigate this 

vulnerability.  
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2 TrustZone Background 

2.1 ARM Permission Model 

ARM has a unique approach to security and privilege levels. In ARMv7, ARM 

introduced the concept of secured and non-secured worlds through the implementation of 

TrustZone and starting from ARMv7a. ARM presents four exceptions (permission) levels 

as follows.  

Exception Level 0 (EL0) Refers to the user-space code. Exception Level 0 is analogous 

to ”ring 3” on the x86 platform. 

Exception Level 1 (EL1) Refers to operating system code. Exception Level 1 is 

analogous to ”ring 0” on the x86 platform. Our attack demonstration starts from EL1 and 

escalating to EL3. 

Exception Level 2 (EL2) Refers to HYP mode. Exception Level 2 is analogous to ”ring -

1” or ”real mode” on the x86 platform.  

Exception Level 3 (EL3) Refers to TrustZone as a special security mode that can 

monitor the ARM processor and may run a real-time security OS. There are no direct 

analogous modes, but related concepts in x86 are Intel’s ME or SMM.  

Each exception level provides its own set of special purpose registers and can access 

these registers at the lower levels, but not higher levels. The general purpose registers are 

shared; therefore, moving to a different exception level on the ARM architecture does not 

require the expensive context switch associated with the x86 architecture.  

2.2 ARM TrustZone 

ARM TrustZone technology is aimed at establishing trust in ARM-based platforms. In 

contrast to a TPM (Trusted Platform Module), which is designed as a fixed-function 
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device with a predefined feature set, TrustZone represents a much more flexible approach 

by leveraging the CPU as a freely programmable trusted platform module. To do that, 

ARM introduced a special CPU mode called 'secure mode' in addition to the regular 

normal mode, thereby establishing the notions of a 'Secure World' and a 'Normal World' 

(Figure 1). The distinction between these worlds is completely orthogonal to the normal 

ring protection between user-level and kernel-level code, and hidden from the operating 

system running in the Normal World [17].  

 

Figure 1: Normal and Secure World 

As an example, the Linux kernel runs in EL1 and the user-space processes execute in 

EL0. The separation of Secure and Normal World secures certain RAM ranges and 

peripherals, which are only accessible by the Secure World. This means that a 

compromised Normal World code (in the user-space or the kernel) cannot access these 

memory ranges or devices. This separation is completely artificial. The same cores are 

used to run both Secure and Normal Worlds and they use the same RAM (Figure 2). 
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Figure 2: NS bit 

The Non-Secure (NS) bit is used to determine whether the CPU executes in Normal or 

Secure World context to create a separation in memory. TrustZone technology extends 

beyond the processor into the SoC peripherals connected with the SoC, such as the 

DRAM controller (Figure 2), the DMA (Direct Memory Access), the secure boot ROM, 

the GIC (Generic Interrupt Controller), the DMA (Direct Memory Access), the secure 

boot ROM, the GIC (Generic Interrupt Controller), the  TrustZone Address Space 

Controller (TZASC), the TrustZone Protection controller (TZPC) and the Dynamic 

Memory Controller (DMC). 

The above components communicate through the AXI bus and the SoC communicates 

with peripherals through the AXI to APB bridge. The SoC peripherals are implemented 

by third-party companies; therefore, to reduce costs, some vendors choose not to comply 

entirely with TrustZone specifications. It is possible to access the entire memory from the 

Secure World but not vice versa. The Secure Monitor Call (SMC) instruction is used to 

traverse to the Monitor in EL3.  The SMC depends on the manufacture implementation 

and, thus, is prone to bugs and other vulnerabilities [10]. This paper focuses on the 

physical level of memory isolation. TrustZone enables memory partitions between 

Normal and Secure Worlds by using the TZASC and the TZPC.  This provides a secure 
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I/O to peripherals over standard interfaces. For instance, the  SPI or GPIO route interrupts 

to the TEE kernel (Secure World kernel) through the TZPC. The NS bit is used to secure 

on-chip peripherals from the Rich Execution Environment (REE, Normal World) [18]. 

TZASC utilises the NS bit for a memory-mapped device like DRAM. These two devices 

require support from the AXI bus, which is vendor-specific. TrustZone use cases include 

building a root-of-trust for the system with everything needed for a secure boot and 

system recovery. 

Secure World trusted applications may be used for secure PIN and biometric checks to 

ensure details are safe from hacking. Another trusted application use case is Digital Right 

Management (DRM) for online media, where the private information is kept within the 

Secure World so hackers cannot access the keys required to reverse-engineer the system. 

Many more use cases of TrustZone can be found for IoT and mobile devices [19]. 

2.3 OP-TEE 

 

Figure 3: Outline of ARM TrustZone 

OP-TEE [13] is a Trusted Execution Environment (TEE) designed as a companion to a 

non-secure Linux kernel running on ARM Cortex-A cores using the TrustZone 
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technology. OP-TEE implements TEE Internal Core API v1.1.x, which is the API 

exposed to Trusted Applications and the TEE Client API v1.0, which is the API 

describing how to communicate with a TEE. These APIs are defined in the 

GlobalPlatform API specifications. The non-secure OS is referred to as the Rich 

Execution Environment (REE) in TEE specifications. 

OP-TEE is designed primarily to rely on the ARM TrustZone technology as the 

underlying hardware isolation mechanism. However, it has been structured to be 

compatible with any isolation technology suitable for the TEE concept and goals, such as 

running as a virtual machine or on a dedicated processor core. The main design goals for 

OP-TEE are: 

• Isolation - OP-TEE provides isolation from the non-secure OS and protects the loaded 

Trusted Applications (TAs) from each other by using underlying hardware support. 

• Small footprint - OP-TEE should remain small enough to reside in a reasonable 

amount of on-chip memory as found on ARM-based systems. 

• Portability - OP-TEE is aimed to be pluggable to different architectures and must 

support various setups such as multiple client OSs or multiple TEEs.  

OP-TEE offers threads and shared memory among the REE to the secured OS, Secured 

interrupts, RPC from the secured to the REE and communication from the REE to the 

Secured World via the SMC interface where some are possible attack vectors. For 

instance, consider an attack on the SMC interface. It is possible to replace the SMC 

interface from the REE side with malicious code that hijacks the SMC requests in the 

non-secure side, for example, by manipulating the kernel code itself by a DMA attack.  It 

is also possible to attack the shared-memory in cases when it is used. TrustZone-

protected DRAM or non-secure DRAM is used as the backing store. The data in the 

backing store are protected with a hash. However, read-only pages are not encrypted 
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because the OP-TEE binary itself is not encrypted. Therefore, a DMA attack on the OP-

TEE kernel is easier than on TA-encrypted programs as it bypasses the MMU 

permissions model as well as the need to encrypt the code. Each TA is encrypted with a 

private key. The vendor creates a public key that is used to decrypt the TA. The 

decryption takes place in OP-TEE in the TrustZone. Thus, the program in its decrypted 

form is only visible in the Secured RAM and the processor's EL3 cache.  It is, therefore, 

sensible to attack in the decryption area. 
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3 Related Work 

Many words were written on side-channel attacks and other vulnerable targets in ARM 

architecture in prior research. In the area of ARM, [8] et al. describe a downgrade or 

rollback attack. A trusted application is encrypted for security purposes by public and 

private keys that originate from the hardware. In cases when the system is updated, old 

TAs can still be executed on the new system. A downgrade attack is when an attacker 

exploits a vulnerability in the old TA version by patching the old version onto the new 

TA version. According to [8], the above applies to the OP-TEE and QSEE (Qualcomm's 

Secure Execution Environment). [8] et al. describe a simple procedure for mobile phones: 

root the device, remount the 'system' partition in READ-WRITE mode, replace the 

current trustlet with an old vulnerable trustlet and use the trustlet. [8] et al. describe 

another possible rollback attack on the chain of trust and proves it possible to downgrade 

the bootloader successfully. 

Armageddon [20] et al. explore attacks on ARM caches, concentrating on cross-core 

cache attacks in non-rooted arm mobile devices and showing a novel approach to exploit 

the coherence protocols. Although most smartphones have multiple processors that do not 

share caches, cache coherence protocols allow processors to fetch cache lines. By 

exploiting the lack of ‘cache flush’ on 'old' ARM cores (before ARMv8), a novel 

technique that analyses cache eviction strategies and another approach on how to perform 

cycle-timing without root access. Armageddon [20] et al. provide a technique to gain 

sensitive information such as inter-keystroke timings or the length of a swipe action 

requiring significantly higher measurement accuracy. As for TrustZone vulnerability, 

Armageddon [20] shows a cache attack used to monitor cache activity caused within the 

ARM TrustZone from the Normal World. 
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Flush and Reload attack [21] et al. take advantage of the coherence protocol in a 

multiprocessor computer. In most ARM processors, the last level cache is inclusive (i.e. it 

includes low-level cache lines); therefore, examining the content of the last-level cache 

may provide the contents of low-level cache lines of another core. However, the 

AutoLock [22] tool assesses the real risk in cache attacks, prevents cross-cache evictions, 

and highlights the intricacies of cache attacks in ARM. AutoLock [22] et al. claim that 

unlike Intel processors, many ARM caches are both inclusive and exclusive, and 

therefore hardens the LLC (last-level cache) attacks. In their work, Demme et al. [23] 

demonstrate that small changes to the cache architecture have a considerable impact on 

side-channel vulnerability. Like cache attacks, DMA attacks are continuously under 

research. [24] et al. show that by dumping memory frequently enough using DMA 

transactions, write patterns can be examined, and some algorithms, such as the RSA 

Montgomery ladder [25] , may leak secrets. DAGGER [26], a DMA-based keystroke 

logger, exfiltrates captured data to an external entity and cannot be detected by anti-virus. 

[26] shows how DAGGER can steal cryptographic keys, target OS kernel structure, and 

copy files from the file cache on Linux and Windows through DMA malware, even if the 

memory addresses are random. [26] et al. also offer countermeasures to detect DMA 

attacks. [27] et al. integrate DMA attacks through FireWire into Metasploit [28] for 

payload selection, session control, etc. and attack via DMA over Firewire. 

TRESOR-HUNT [29] relies on the insight that DMA-capable adversaries are not 

restricted to simply reading physical memory but can write arbitrary values to memory as 

well. Hard disk encryption keys were considered safe if not saved on the RAM, but 

TRESOR-HUNT [29] injects malicious code to the kernel using DMA attack and then 

extracts disk encryption keys from the CPU into the target system's memory from which 

they can be retrieved using a normal DMA transfer. [30] et al show that an adversary 
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with physical access to a device, could impersonate the device's memory controller, by 

attaching a malicious memory controller to the exposed pins of each DIMM socket of 

RAM and, by doing so, an attacker would have full access (READ/WRITE) to the target 

memory. Duflot et al. [31] introduce the vulnerability of remote code execution on a 

network adapter and how it could compromise the system-running kernel using DMA 

attack. BROADPWN [32] is a novel approach of privilege escalation. From exploiting a 

bug in Broadcom WiFi chip into DMA attack on the main processor of the device. The 

emerging of cache, DMA, and hardware attacks shows that not only software bugs can 

impose security risks but also hardware implementation bugs are becoming more 

common, specifically when new features rely on old security assumptions. [1] et al.show 

that because ARMv7 (the ARM debugging model) requires no physical access, a low-

privilege host can use ARM debugging features to gain read/write access to TrustZone 

Secure World. Because there is no hardware privilege access control, a low-privilege host 

can initiate a debug session with a high-privilege target using ARM debugging features. 

[1] et al.use ARM debugging features to leak private keys from the Secure World, thus 

compromising ARM TrustZone security. The hardware implementation bugs of ARM 

debugging features affect development boards, IoT devices, and mobile devices. Defense 

against these vulnerabilities requires hardware and software solutions like the 

vulnerability we found. [1] et al.suggest that ARM should add restrictions in the 

interprocessor debugging model to enforce permission between host and target. SoC 

vendors should refine debug signal management, and add support to disable only inter-

processor debugging. OEMs should add software-based access control to go with the 

hardware permission model. Matt Spisak et al. [33] describe another processor feature-

based attack using ARM CoreSight debug features. [33] et al.leverage ARM PMU 

(Performance Monitoring Unit) to create a rootkit that cannot be detected by the kernel 
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monitor because it does not change the kernel syscall but rather attaches through the 

PMU to any syscall. Thus, every syscall will raise a PMU event, and the rootkit would be 

able to modify the input and output data of the syscall. This attack is possible due to a 

hardware implementation bug of a debug signal authorization that enables debug features 

in the hardware. [34] et al.suggest a different approach where the code and data that need 

to be protected are kept only in EL2 [35] (HYP mode) instead of in the TrustZone, where 

there is a strong coupling between vendor-specific code and hardware implementation; in 

which case, EL1 and EL0 will not have access to this code. Cloaker [36] et al.leverage 

ARM architecture System Control Register (SCTLR) to move the exception vector table 

(EVT) from high to low address so that mapping a malicious EVT at address 0x0 would 

intercept all exceptions. 

Much is found in the literature on control-flow integrity (CFI). [37] et al.present the 

kernel CFI used to protect the kernel's stack and heap. A flaw in the kernel may allow 

user processes to write to kernel-space. Therefore, processor vendors presented the NX 

(Never Execute) bit that thwarts execution from the kernel's data portions. However, the 

execution segments were still writable and vulnerable to exploits. This led to making the 

kernel execution part read-only. But this also was not enough, as all of the user-space 

portion could be both written to and executed via a kernel exploit. To probity this, Intel 

created the supervisor mode execution prevention (SMEP) and ARM privileged execute 

never (PXN) bit. These features restrict the kernel from executing user-space memory 

while in kernel mode. This led attackers to target the stack, mainly manipulating the 

return addresses kept on the stack. This type of attack is referred to as 'return-oriented 

programming' (ROP) attacks. ROP attacks manipulate indirect calls, i.e. function 

pointers. These attacks concentrate on the calling (forward edge) and returning (backward 

edge) of a function. Thus, the main purpose of CFI is to try to ensure that forward edges 
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go to the expected addresses and that the backward edges are not changed. CFI is 

implemented through the Clang compiler extensions and utilizes link-time optimization 

(LTO) to examine the entire kernel code.  Functions are classified according to their 

signature and checked in runtime. Another mechanism is kCFI, which narrows the 

classification of the edges. Thus, to use this feature, OP-TEE must be compiled with 

Clang and then apply kFCI on it.  Unfortunately, none of these defenses thwart a DMA 

attack. In the area of thwarting hypervisor CFI attacks, [38] et al. offer Hypersafe. 

Hypersafe is used to protect the hypervisor from CF hijack attack through a memory 

lockdown and restricts pointer indexing, a layer of indirection that converts the control 

data into pointer indexes. These pointer indexes are restricted such that the corresponding 

call/return targets strictly follow the hypervisor control flow graph, hence expanding 

protection to control-flow integrity. This mitigation reduces the ease of performing a 

DMA attack on the hypervisor and, combined with IOMMUs, DMA attacks can be 

entirely mitigated.  
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4 The Attack – Return of the DMA 

4.1 DMA Attack 

Direct Memory Access (DMA) allows I/O devices to access the memory. DMA has 

evolved since its inception, when a single DMA controller was set in a computing 

system. Following the introduction of many high-speed I/O peripherals, devices started to 

incorporate DMA engines that enabled them to initiate DMA transactions without the 

coordination of a central DMA controller. ARM implements the advanced 

microcontroller bus architecture (AMBA), an open standard for on-chip interconnect 

specification. DMA transactions connect through the DMA controller to the on-SOC 

AMBA AXI Bus (AMBA advanced extensible interface) and the AMBA AXI Bus 

supports TrustZone NS-bit. The DMA controller can handle secure and non-secure events 

simultaneously, with full support for interrupts and peripherals. Examples of DMA 

devices are graphic cards, network adapters, FireWire, ThunderBolt, etc. 

Although DMA is essential for fast I/O transactions, it also opens new vulnerabilities to 

DMA attacks [12], [29], [35]. This paper demonstrates a DMA attack on a poorly 

implemented TrustZone hardware architecture; without an SMMU (System Memory 

Management Unit) or ARM TZASC/TZPC and AXI-bus NS bit support, the system 

cannot prevent a DMA-capable device like Firewire/Thunderbolt from accessing the 

RAM. 

4.2 Attack Goal 

The secured memory is accessible through DMA transactions. Through this vulnerability, 

the TrustZone can be exploited. We escalate privileges by reading data from the Secure 

World. 
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Through this attack, we inject code to the Monitor in EL3, thus executing malicious 

programs in the Secure World operating system (the Secure World kernel). This offers us 

to bypass any validation of the secure operating system and also makes it possible to 

patch the EL1 kernel and execute arbitrary code.   
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4.3 The Attack – “Trusted” Arbitrary Code Execution 

Attack primitive is based on Write What Where vulnerability achieved using DMA 

transactions and overriding the code in the RAM. We use this vulnerability to show that 

we can gain access to execute arbitrary code in the OP-TEE OS, thereby bypassing OP-

TEE OS trusted application signature validation and gaining control of every trusted 

application in the system. Our approach is to change the return values of key functions 

without changing the stack. This technique impedes CFI tools such as gcc stack guard 

[36] or Clang [32] kFCI to detect our attack. Trusted applications are located on the REE 

file-system because this file-system usually contains more memory; by using this file-

system, it is easier to update those applications. The trusted applications are built 

separately from the trusted operating system (similar to Linux kernel and user-space 

applications in the Normal World) and are signed with a private key from the 

manufacturer of the device application (e.g. Samsung sign their trusted applications with 

their private key). Common usages of trusted applications are DRM validations, HMAC 

(keyed-hash message authentication code) based one-time password, AES encryption and 

more. Using the trusted applications, the manufacturer of the device can make sure a 

compromised user or kernel will not break the integrity of the device. When the 

manufacturer wants to update a trusted application, they sign the new version with the 

same private key and distributes it to the users. When the Secure World OS executes a 

trusted application, if the signature is invalid, then a security error will occur and the 

program will not run. In our attack, we first use a DMA attack in order to read memory 

pages from the RAM.  DMA attacks can be initiated from peripheral devices such as 

FireWire, PCI-connected devices (Network cards, GPU, etc.) as demonstrated by [28], 

[29], [12].  DMA attacks can also be initiated from the CPU if the CPU can access the 
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DMA controller. After reading memory pages from the RAM, we analyse the memory 

and compare it to ARM Trusted Firmware in order to locate similar functions. (Most of 

TrustZone software implementations are based on ARM Trusted Firmware, which makes 

reverse-engineering of the code simpler.) Moreover, there are some major vendors' secure 

OS (Trusted Execution Environment) in the market (QSEE, OPTEE) and we compare our 

memory dump to the compiled versions of those; by doing so, we can find the functions 

that validate trusted application signatures. Because none of the widely used TEE OS 

uses Address Space Layout Randomisation (ASLR) [37] we can use the address from our 

memory dump to override trusted applications signature validations with a DMA attack. 

After doing so, we can just replace any TA with our own malicious TA. Even though we 

do not know the correct signature private key, the TEE OS will succeed to validate our 

malicious TA. 
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4.4 Attack summary and vulnerable devices 

Using the above method, it is possible to bypass the TA validation by replacing the 

signature key itself or by patching the validation function so there is no need to sign the 

TA at all. Using DMA attacks on the TrustZone gives a wide range of attack possibilities. 

In this paper, we show the usage of DMA attack to perform ACE (Arbitrary Code 

Execution); however, it is also possible to use this method to read arbitrary code from 

physical memory whereby a malicious user can access sensitive data. We also show that 

hardware implementation bugs are common even on security features like ARM 

TrustZone. 

Table 1 List of vulnerable SoC 

Manufacturer SoC Device 

Texas Instrument CC2538 Sensibo 

HISILICON Hi3518EV200 Security Cameras 

HISILICON Hi3519V101 Security Cameras 

Amlogic Meson3 Wifi Network Speaker 

ST STM32 Smart Vaccums 

 

Table 2 presents a few SoCs of real IoT devices that lack some TrustZone hardware, but 

support TrustZone in the ARM Core, thus making the TrustZone 'untrusted'. One can 

claim the devices using this SoC do not use TrustZone at all; However, if this were the 

case, then those devices would not be using all the security options given to them, thus 

introducing architecture security flaws [38] [39] [40].  
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5 Attack Evaluation 

5.1 Raspberry PI 

Raspberry PI is a low-cost computer with wide range of uses, from its original target 

market of education to robotics, research projects and IoT devices (weather monitoring, 

smart home, smart camera, WIFI range extender and many more). 

We use a Raspberry PI3 Model B to demonstrate the attack. The Raspberry PI3 Model 

B’s main specifications are shown in Table 1. 

Table 2: Raspberry PI 3 Specifications 

SoC Broadcom BCM2837 

CPU 4 cores, ARM Cortex A53, 1.2GHz, 

(clocked to 700MHz) 

RAM 1GB LPDDR2 (900 MHz) 

Clock 19.2 MHz 
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Figure 4: BCM2837 overview 

Figure 4 presents the BCM2837 chip. This Broadcom SOC supports TrustZone and 

DMA transactions through the AMBA (Advanced Microcontroller Bus Architecture) 

AXI (Advanced Extensible Interface). As mentioned earlier, not all TrustZone cores 

comply with the entire hardware specifications. Figure 4 shows that the BCM2837 has 

the correct AXI bus, but it lacks the TZASC and TZPC, making it vulnerable to DMA 

attacks. 
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5.2 OP-TEE OS for Raspberry PI 

OP-TEE supports Raspberry PI 3 Model B. The ARM Trusted Firmware is the basis for 

implementing Secure World software for the ARM A-Profile architectures (ARMv8-A 

and ARMv7-A), including an Exception Level 3 (EL3) Secure Monitor. 

The (SMC) Secure Monitor Call instruction is used to invoke functions between the 

Normal World and the Secure World through the Secure Monitor (Figure 3). ARM 

Trusted Firmware for the Raspberry PI provides a suitable starting point for the 

productization of Secure World boot and runtime firmware [41]. When a vendor uses OP-

TEE on any hardware in general, and on Raspberry PI specifically, they will most likely 

use a trusted application in order to implement hardware security measures and secure 

their devices [42].  

All real-world environment file-system trusted applications need to be signed. The 

signature is verified by OP-TEE OS upon loading of the TA. Within the OP-TEE OS 

source is a directory key. The public part of the key (public key) will be compiled into the 

OP-TEE OS binary and the signature of each TA will be verified against this key upon 

loading using an RSA signature scheme [43]. A vendor must sign his trusted application 

with a private key; thus, if a malicious party tries to change the trusted applications on the 

file-system, the OP-TEE OS will return a security error and will not execute the 

malicious trusted application. 

Without this mechanism, a malicious party would be able to alter trusted applications 

code, which will gain them access to the TrustZone security storage. 

When a vendor updates a trusted application, they sign the new TA with their private key.  

OP-TEE OS contains the public key, thereby validating the TA. In this paper, we present 

a way to bypass this mechanism and execute our own 'trusted' applications. 
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5.3 Raspberry PI DMA 

The DMA controller can be configured through the CPU as well as an external device. 

Therefore, we chose to perform this attack through the CPU.  We authored a Linux kernel 

module to perform the DMA transactions. This module maps the DMA controller and 

configures the DMA control block to initiate DMA transactions. 

In OP-TEE's Linux kernel, the DMA controller address space is not available to the user-

space. However, it is plausible to assume that an IoT device, for example, will enable this 

device for peripherals access. 

We argue an attack is possible in many IoT devices and we will show the following 

scenarios: 

1. Some IoT devices mapping physical memory to the user-space to increase 

performance and save kernel access that may lead to DMA controller access. 

2. Linux-based devices (IoT devices, routers, etc.) do not update their kernel 

versions very often due to compatibility issues and the large number of devices. 

Thus 'one day's' vulnerability can be used to exploit the device and gain root 

access to perform actions on the DMA controller [44] [45]. 

3. Attack peripheral device (Bluetooth/WIFI chip, SSD controller, etc…) to perform 

malicious DMA transactions [46], [47], [48]. 

All those scenarios may lead to a DMA attack and, on some devices, to a TrustZone 

vulnerability. 

[49] presents the Control Block structure of a DMA and the DMA Controller registers in 

the Raspberry PI. To initiate a DMA transaction, we first set the Control Block structure 

and then set CONBLK_AD in the DMA controller structure. We perform two types of 

DMA transactions:  
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1. Set SOURCE_AD to the Secure World physical address in order to read data of 

the Secure World. 

2. Set DEST_AD to the Secure World physical address in order to write malicious 

code to the Secure World, thereby achieving arbitrary code execution. 

 

5.4 The Attack – Evaluation on Raspberry PI 

In OP-TEE environment. Trusted applications are signed with the key from the build of 

the original OP-TEE core blob. Trusted applications consist of a signed ELF header, 

named from the UUID of the trusted application (set during compilation time) and the 

suffix “.ta”. When a trusted application is replaced in the REE file-system with the new 

one, the signatures and UUID are validated by the OP-TEE OS (Figure 5). 

 

Figure 5:Open Session function Flow 

Invoking a trusted application function from the Normal World requires the use of SMC 

(Secure Monitor Call). SMC is used to communicate between the Normal World and 

Secure World. SMC is initiated by the kernel (EL1) to reach the EL3 monitor. 
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OP-TEE provides a Linux kernel driver to interact with the OP-TEE in TrustZone. For 

instance, PTA_SYSTEM_OPEN_TA_BINARY function is accessed by this driver to the 

OP-TEE OS in the Secure World. PTA_SYSTEM_OPEN_TA_BINARY calls system 

open_ta_binary, which looks for the user-trusted application ELF by the UUID in the 

storage (file-system). 

After finding the trusted application ELF in the REE file-system, the OP-TEE OS loads 

the ELF header and maps the trusted application sections into the secure memory using 

PTA_SYSTEM_MAP_TA_BINARY. After loading the trusted application, the user is able 

to invoke the trusted application functionality through the OP-TEE Linux kernel driver. 

We focus on two functions: ree_fs_ta_open and ree_fs_ta_read called by PTA 

SYSTEM_OPEN_TA_BINARY and PTA_SYSTEM_MAP_TA_BINARY respectively. 

Trusted applications binaries contain a signed header so that a malicious user cannot 

replace the trusted applications. If a malicious user replaces a trusted application, then 

OP-TEE OS returns a security error when it tries to execute those trusted applications. 

In order for OP-TEE OS to validate those signatures, as a trusted application executes, 

the function ree_fs_ta_open loads the trusted application header, validates the application 

header signature (Figure 6), and validates its size (Figure 7). 

1. /* Validate header signature */ 
2. res = shdr_verify_signature(shdr); 
3. if (res != TEE_SUCCESS) 
4.     goto error_free_payload; 

Figure 6: ree_fs_ta_open Header signature validation 

1.  if (ta_size != offs + shdr->img_size) { 
2.   res = TEE_ERROR_SECURITY; 

3.   goto error_free_hash; 

4.  } 

Figure 7: ree_fs_open TA size validation 
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When OP-TEE OS maps the TA into the secure memory, it loads the application to the 

memory using ree_fs_ta_read, which validates the encrypted trusted application 

signature (Figures 8 and 9). 
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1. if (handle->shdr->img_type == 

SHDR_ENCRYPTED_TA) { 

2.     /* 
3.      * Last read: time to finalize 

authenticated 

4.      * decryption. 
5.      */ 
6.     res = tee_ta_decrypt_final(handle-

>enc_ctx,handle->ehdr, NULL, NULL, 0); 

7.     if (res != TEE_SUCCESS) 
8.         return TEE_ERROR_SECURITY; 
9. } 

Figure 8: ree_fs_ta_read decrypts a TA header 

1.  /* 
2.  * Last read: time to check if our digest 

matches the expected 

3.  * one (from the signed header) 
4.  */ 
5. res = check_digest(handle); 
6. if (res != TEE_SUCCESS) 
7.     return res; 

Figure 9: ree_fs_read validates the encrypted header against the hash of the plain header 

In the first step, we reverse-engineered OP-TEE OS (using radare2 [50]) in order to 

find key opcodes of both functions to exploit (Figures 6 - 9). We need to perform this 

step one time, because there is no ASLR we know the address of the opcode in each 

boot of the system. On different SoC we need to perform reverse-engineering method 

again just to find the relevant addresses. We used DMA transactions to read chunks 

of physical RAM in order to find the opcodes that match the functions above. Once 

we located the opcodes in the memory and noticed that these functions load in the 

same location in physical memory every time. We used DMA transactions to override 

the return values of the validations mentioned above (Figure 6 - 9), thereby gaining 

the ability to compile our own trusted application, sign it with an arbitrary key and 

execute it on the machine. We replaced two types of opcodes: the comparison opcode 

of w0 register was replaced with cmp w0,w0 so it always returned true and, when 

moving the return value of the function to w0 register, we replace this command with 
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eor w0,w0,0 so the value of w0 register would be 0, again having the return values of 

the validation functions equal true. 

We were able to perform this replacement using just a simple DMA transaction with 

the control block DEST_AD set to the physical address of the opcodes we found; all 

of which constitute in the Secure World memory. Because Raspberry PI does not 

support physical bus Secure World separation, we used a DMA transaction to replace 

the correct opcodes with our malicious opcodes. 

The trusted applications binaries are on the REE file-system and, thus, can be over-

written; however, the OP-TEE OS will never execute a replaced TA when the 

signature does not match. 

Faking a matching signature requires finding a private key of 2048-bit that matches 

the public key; therefore, only the owner of the key would be able to replace those 

applications. In our case, we compiled a new TA with the same UUID of the original 

one and put it in the file-system location. By executing our malicious TA, we gained 

the ability to manipulate ARM TrustZone to execute invalid signed binaries. 

For example, we compiled a fake AES TA (given in the examples of the OP-TEE 

suite) that encrypts data with our malicious key. Thus, every time the user uses this 

TA to perform AES, the data will not be truly encrypted with a secret key. 
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6 Mitigations 

When choosing a SoC for a device you must compare the device requirements to the 

features the SoC contains. In our case when choosing a SoC we want to make sure the 

SoC architecture has all the chips required for ARM TrustZone to work properly 

(TZASC, TZPC, supported bus, etc…). The process of checking the SoC architecture is 

not always easy and surely not automatic, because not all vendors publish their SoC 

architecture. 

We suggest for SoC vendors to be more transparent about their architecture when it 

comes to security features. We also suggest manufacturers to ensure that their SoC 

hardware supports not only TrustZone ARM Core but also TrustZone specification. 

In cases where a fully compatible TrustZone is not available (Lack of hardware on the 

SoC which makes the TrustZone secure), we list other protection techniques:  

• Using SMMU (similar to IOMMU on Intel x86) to configure specific addresses for 

DMA controllers. SMMU works as MMU for BUS access, so any memory access 

through the BUS would have to be matched to the permission configured to the accessed 

address. With SMMU and a correct configuration a DMA attack through peripheral will 

not be possible. It is also important to note a kernel attacker could change this 

configuration. 

• In the case of Raspberry PI, by disabling the DMA controller, a non-privileged user or 

peripheral would not be able to use DMA transactions. 

• Set the Secure World on a different RAM without DMA controller mapping so there is 

no physical interface between the Normal and Secure Worlds. 

A software protection would be to encrypt parts of the OP-TEE code itself, mainly the 

TA decipher functions. Only when these functions are used, OP-TEE will decrypt the 
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functions into the cache, validate the TA, and evict the cache. This method was 

introduced by [24]. Using this method an attacker would have to time his attack in order 

to get the code from the RAM. Combine this method with ASLR and HALT the other 

cores and this attack will be mitigated. 

  



34 

 

7 Summary and Conclusions 

7.1 Summary 

We live in an era of ever-growing IoT devices and connectivity demands. Connectivity 

between our home, cars, smartphones, etc… impose privacy risk in case of 

vulnerabilities. Those privacy risks impose a great threat to our day to day life, from 

digital impersonating, data/money stealing, and more. 

To mitigate those risks IoT/Smartphone devices vendors invest more and more in security 

mechanisms. In particular, hardware-supported security mechanism, for instance, ARM 

TrustZone, which allows running secure applications and using secure storage so normal 

world vulnerability (kernel or user space) won’t cause leakage of secure information, for 

instance, encryption keys of encrypted on-device-data. 

Since ARM TrustZone is not a single chip but rather an entire architecture, many ARM 

SoC manufacturers (Huawei, Broadcom, Qualcomm, etc…) may introduce vulnerability 

to their SoC which will compromise the entire TrustZone security suite. Zhenyu Ning and 

Fengwei Zhang, et al. [1] showed how manufacturers fault implementation of debug 

signals impose vulnerability which gives access from normal world to the secure world 

and compromises ARM TrustZone security. In our approach we assembled a malicious 

DMA transaction to read data from the secure world such as encryption keys so 

encrypted on-device-data become compromise. Also using DMA transaction, we gain 

privilege to execute malicious code in the secure world, so we bypass trusted OS 

signature validations and by doing so we obtain full control on the trusted applications. 

Our attack let us create a malicious trusted application that can impersonate to a valid 

one, even though our application signature will not match, by changing 4 opcodes. Using 
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the DMA transaction, we manage to bypass those validations. We evaluate our attack on 

Raspberry PI 3 model B, and we show how we maliciously replace AES key generator 

trusted application to return a key. Such that every use of this trusted application is 

compromise and we could maliciously decrypt all the data encrypted with this key. Our 

main contribution is to show that even though we have an architecture which supports 

hardware security features it is still responsibility of the developers to make sure this 

architecture meets the security standard of ARM and making sure they configure the 

secure memory regions correctly. It is important to note that our attack can work on 

devices such as i.MX53 even though the TZASC component is part of the architecture 

because both peripherals IPU and GPU share the same DMA channel so if the IPU can 

access the secure world, the GPU can access the secure world also. 

Making sure a device does not have TrustZone hardware related vulnerabilities requires 

comprehensive design review. We call SoC manufacturer to invest more in their design 

reviews and developers to make sure to configure the secure world properly. 

7.2 Future Work 

In this work, we present an attack vector on ARM TrustZone secure world caused by 

hardware architecture vulnerability or misconfiguration of secure memory regions. This 

work can be further extended in several directions: 

1. Scope expansion. In this work, we focus on hardware architecture vulnerability 

but due to lack of software configuration validations in the TrustZone it is 

common to find software misconfiguration of the secure world memory. 

2. Hardware Vulnerabilities in ARM TrustZone architecture. In this work we 

mainly focus on the lack of TZASC component. Relying on previous work of 

Zhenyu Ning and Fengwei Zhang et al. [1] and Matt Spisak et al. [34] we can use 
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different approaches by leveraging ARM debug features to enable DMA attack 

vectors on the TrustZone on different platforms. Those attack vectors will not 

require a lack of component in the hardware design.  
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 תקציר 9

ARM TrustZone  בטוחה ריצה  של המעבד.    מציע סביבת  נמצא   ARM TrustZoneכחלק מהחומרה 

מעבדי   עם  ברכיבים  רחב  סלולאריים,    ARMבשימוש  טלפונים  ורכיבי  IoTרכיבי  כגון:   ,embedded .  

הפרטיות,   ובחשיבות  מידע  לאבטחת  במודעות  גדילה  המימשו    ARMעקב  המאפשר    TrustZone-את 

מאובטחות למערכת ואפליקציות  זיכרון מאובטח  להוסיף  כגון  ליצרניות  צופן  פעולות  לבצע  כדי  זאת   ,

כדי למנוע    DRMיצירת מפתחות הצפנה, שמירת טביעת האצבע של המשתמש בזיכרון מאובטח, הגנת  

 . גניבת מידע עם זכויות יוצרים וכו'..

 יכול לשפר את רמת האבט  ARM TrustZone-למרות ש

גבוהות,   הרשאות  עם  מתוקף  מידע  על  ולהגן  במערכת  ה חה  של  החומרתי  תלוי    TrustZone-המימוש 

עם כל הרכיבים הנלווים    ARMלפי הארכיטקטורה של    TrustZone-ועליו להטמיע את ה  SoC-ביצרן ה

כגון   ועוד...  TZASC  ,AXI-BUSלכך  מהרכיבים    תומך  יותר  או  אחד  מחסיר  היצרן  בהם  במקרים 

   שיפגעו בתכונות האבטחה שלו.  TrustZone-עלולות להיווצר פגיעויות ב TrustZone-הנלווים ל

זו   עבודה  של  איך  התרומה  מציגים  אנו  ראשית  כדלקמן.  רכיבי    ARM TrustZoneהיא  ומה  עובד 

המרכזיים   של  החומרה  האבטחה  שתכולות  לכך  שני  ARM TrustZoneשדואגים  אנחנו    תישמרו. 

למימוש מאובטח של    ARMיצרניות שלא עמדו במפרט של  מבצעים הדגמה של פגיעויות שנגרמות עקב  

על  TrustZone-ה מבוססת  שלנו  התקיפה   .DMA    למערכת היקפיים  מרכיבים  אותה  לבצע  שניתן  כך 

בעזרת גישה    כגון: כרטיס רשת, כרטיס מסך וכו'..., אנחנו מראים גם שניתן לבצע אותה מהמעבד עצמו

שאחראי על ווידוא החתימה    RAM-הקוד הרלוונטי ב  התקיפה מורכבת מזיהוי  . DMA Controller-ל

( פעולת  (Trusted Applicationsשל האפליקציות הבטוחות  דורש  זיהוי הקוד   ,reverse engineer    אך

באותם משתמשים  הרכיבים  שרוב  ב  כיוון  הפעלה  הSecure World-מערכות  פעולת   ,-RE    הופכת

ניתן בעזרת טרנזקצית    פשוטה.  לדרוס את הקוד שמוודא את חתימת האפליקציות    DMAלאחר מכן 

 המאובטחות. 

המאובטחות   והאפליקציות  הזיכרון  על  מלאה  שליטה  להשיג  איך  נציג  זה  ריצה  במחקר  כדי  תוך 

ן  נצייונציג ניצול פשוט של החולשה על חומרות שונות  ,  בהרשאות נמוכות, נראה עד כמה החולשה נפוצה

 .פגיעים IoTרשימה של רכיבי  
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דר'   של  בהדרכתו  בוצעה  זו  זידנברג  עבודה  של  ונצר  יהודה  עזרתו  בן  מאוניברסיטת  רז 

  .יובסקולה, פינלנד
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 המרכז הבינתחומי בהרצליה
ספר אפי ארזי למדעי המחשב -בית   

 מחקרי מסלול   -  (.M.Scהתכנית לתואר שני )

 

 

 

 ARMתקיפה על 

TrustZone על ידי ניצול  

 חולשה חומרתית
 

 

 

 

 מאת 

 רון שטיינרוד 

 

   .M.Scכחלק מהדרישות לשם קבלת תואר מוסמך  עבודת תזה המוגשת

 הרצליה  זי למדעי המחשב, המרכז הבינתחומיבמסלול המחקרי בבית ספר אפי אר 

 
1202  פברואר  


