Seigniorage and the welfare cost of inflation

Evidence from an intertemporal model of money and consumption*

Zvi Eckstein
Tel-Aviv University, Ramat Aviv 69978, Israel
Boston University, Boston, MA 02215, USA

Leonardo Leiderman
Tel-Aviv University, Ramat Aviv 69978, Israel

Received February 1990, final version received January 1992

This paper empirically investigates the restrictions embodied in a Sidorovski-type model for the cross-relations between consumption, money holdings, inflation, and assets' returns using quarterly data for the high-inflation economy in Israel, 1970-1988. Using a set of the estimated parameters it is shown that the model's implications for seigniorage are quite different than those from a Cagan-type model. That is, while the model is able to account for the observed stability of the seigniorage GNP ratio, a Cagan-type model predicts a Laffer curve for seigniorage. The estimates also imply sizeable welfare costs of inflation.

1. Introduction

A common feature of many high-inflation episodes is the lack of a strong positive association between the size of the budget deficit, government seigni-
The first part of the paper deals with estimation, on quarterly time series for Israel, of the parameters of a model that treats consumption and money demand behavior as jointly arising from a single optimizing framework of a representative agent, as in modern monetary theory (see, e.g., Sidrauskis [1967]). To do so, we focus on the restrictions implied by the nonlinear Euler equations that characterize the first-order conditions of optimization by a representative consumer, as in Hansen and Singleton (1982) and Eichenbaum, Hansen, and Singleton (1988). Thus, our research is related to recent work that has tested some of the implications of intertemporal monetary models using time series data (see, e.g., Singleton (1985), Ogaki (1987), Poterba and Rotemberg (1987), Marshall (1988), and Finn, Hoffman, and Schlagenhau (1990)). While these investigations used data for the U.S., here we are particularly interested in exploring and testing the implications of an optimizing representative-consumer framework using data from an economy featuring wide fluctuations in inflation and in monetary aggregates such as Israel in the period 1970–1988. It is challenging for intertemporal models to account for observed consumption and money holdings behavior in this volatile environment, one in which there were relatively large costs and benefits associated with agents’ decisions about how and when to shift purchasing power from one period to another.

After obtaining estimates for the key parameters, the second and main part of our work consists of comparing steady states of the model assuming different rates of inflation to determine whether the implied relation between seigniorage revenue and the rate of inflation conforms with the ‘stylized’ facts and with the implications of a standard semilog money demand model. Using estimated and observable parameters, we find that seigniorage rises with the rate of inflation. However, although seigniorage revenue markedly increases when there is a shift from no inflation to an inflation rate of 10 percent per quarter, there are only negligible gains in seigniorage from increases in inflation beyond that rate. Our calculations indicate that seigniorage revenues in the 1980s were quite close to the maximal revenues (about 3 percent of GNP) that could be collected by the government. The simulated relation between seigniorage and the rate of inflation appears to more closely conform with the data than the Laffer curve that arises from a model based on a Cagan-type money demand.

In addition, we quantitatively assess the welfare losses associated with different steady state rates of inflation. We calculate the steady state welfare cost of a moderate inflation of 10 percent per year at 0.85 percent of GNP, which is more than double most of the available estimates for the United States. The
welfare cost of a rate of inflation of 168 percent per year, the average in Israel for the period 1980–1984, reaches the sizeable figure of 4 percent of GNP.

The paper is organized as follows. Section 2 deduces the restrictions that are imposed on the data by a model that includes money in the utility function, and discusses some steady state implications of the model. Section 3 describes the estimation method, data, and results. Section 4 uses parameter estimates from the previous section along with observable parameters and with a set of auxiliary assumptions about a hypothetical steady state to determine the model’s quantitative implications for the relation between seigniorage and the rate of inflation and for the welfare costs of inflation. Section 5 contains brief concluding remarks.

2. The model

The economy is populated by infinitely lived families, with population growing at rate n. Each household maximizes expected discounted utility

$$E_0 \sum_{i=0}^{\infty} \beta^i U(m_i, c_i^s),$$

where E_0 denotes expectations conditional on information available at time 0, β is a subjective discount factor, m denotes real money balances per capita, c denotes consumption services per capita, and $U(\cdot)$ is a concave utility function that is increasing in both its arguments. Consumption services are assumed to be related to purchases according to the simple relation $c_i^s = c_i^t + \delta c_{s-1}$. Here δ is a fixed parameter and c denotes actual purchases of consumer goods. Thus, consumption purchases at time t directly affect consumption services in both t and $t+1$. In spite of the time separability of utility defined over consumption services and real money balances, the indirect utility function defined over consumption purchases and real money balances is temporally nonseparable.

Each household’s budget constraint, in per capita real units, is given by

$$b_t = b_{t-1}(1 + r_{t-1})(1 + n_t)^{-1} + m_{t-1}[(1 + n_t)(1 + n_t)]^{-1} + y_t - n_t - c_t,$$

where b_t, m_t, y_t are, respectively, the real per capita values of one-period financial assets, money balances, and consumption chosen by the household for time t. n_t and δ, respectively, denote population growth and the rate of inflation from $t-1$ to t, and the real interest factor $(1 + r_{t-1})$ is equal to $(1 + R_{t-1})/(1 + \pi_t)$, where R_{t-1} denotes the nominal return on assets held from $t-1$ to t, y_t is real per capita income from other sources.

Substituting the budget constraint and the specification about the relation between consumption services and purchases into (1), differentiating with respect to b_t and m_t, and rearranging yields the following first-order conditions for maximization of (1):

$$\beta E_0 \left[\frac{U_2(t+1)}{U_2(t)} \left[\frac{(1 + r_t)}{(1 + n_{t+1}) - \delta} \right] \right]$$

$$+ \beta^2 \delta E_0 \left[\frac{U_2(t+2)}{U_2(t)} \frac{(1 + r_t)}{(1 + n_{t+1})} - 1 \right] = 0,$$

$$U_1(t) + \beta E_0 \left[\frac{U_2(t+1)}{U_2(t)} \left[\frac{(1 + n_{t+1})(1 + n_{t+1})^{-1} - \delta} \right] \right]$$

$$+ \beta^2 \delta E_0 \left[\frac{U_2(t+2)}{U_2(t)} \left[\frac{(1 + n_{t+1})(1 + n_{t+1})^{-1} - 1} \right] \right] = 0,$$

where $U_i(t+s)$ is the marginal utility with respect to the ith argument ($i = 1, 2$) evaluated at time $t+s$ ($s = 0, 1, 2$).

Euler eq. (3) is the standard condition for optimally allocating consumption between periods t and $t+1$. It equates the marginal utility cost of giving up one unit of consumption in period t to the expected utility gain from shifting that unit to consumption in the next period. This equation, in alternative versions, has been the focus of numerous recent empirical studies of consumption [e.g., Hansen and Singleton (1982)]. Eq. (4) equates the expected utility costs and benefits of reducing current-period consumption by one unit and allocating that unit to money holdings and then to consumption in the next period. From an empirical perspective, both these equations can be used to derive the model’s restrictions on the comovements of consumption, money holdings, inflation, and assets’ returns over time. Notice that in the special case in which the nominal return R_t is assumed to be known at the start of the period and $\delta = 0$, eqs. (3) and (4) can be combined to yield

$$U_1(t) = \frac{R_t}{(1 + R_t)}.$$
a nonstochastic relation between real money balances, consumption, and the nominal interest rate. This equation can be viewed as a conventional demand for money in implicit form [see Lucas (1986)]. In our framework, however, eqs. (3) and (4) cannot be combined to yield a nonstochastic relation.

In order to estimate the model and derive its implications for seigniorage and the welfare cost of inflation, we use the utility function

\[U(m, c^*) = \frac{[m(c^*)^{\gamma} - 1]}{\gamma}, \]

where \(\gamma \) is a preference parameter between zero and one and \(\theta \) is a preference parameter that is less than one.\(^5\) The parameter \(1 - \theta \) represents both the coefficient of relative risk aversion and the inverse of the elasticity of intertemporal substitution. Accordingly, the marginal utilities appearing in eqs. (3) and (4) are expressed in terms of parameters and observables as follows:

\[U_1(s) = \gamma(m)^{\gamma - 1}(c_t + \delta c_{t-1})^{\theta(1 - \gamma)}, \]

\[U_2(s) = (1 - \gamma)(m)^{\gamma}(c_t + \delta c_{t-1})^{\theta(1 - \gamma) - 1}. \]

When \(\theta \) is equal to zero, we attribute the marginal utilities in (6) and (7) to the log-utility specification \(U(c) = y \log(m) + (1 - y) \log c^* \).

Using these specifications, we next turn to the implications of the model for seigniorage revenue and the welfare cost of inflation—implications which are derived by comparing steady states of the model assuming different rates of inflation. We assume that per capita consumption and real money balances grow in steady states at a constant rate \(\psi > 0 \), that population grows at a constant rate \(n \), and that all real variables are invariant with respect to steady state changes in the rate of inflation.\(^6\) Accordingly, eq. (4) can be rearranged to yield a steady state 'demand for money',

\[m = \left(\frac{\gamma}{1 - \gamma} \right) \left(1 + \frac{\delta}{1 + \psi} \right) c \left(1 + \alpha_1 - \frac{\alpha_2}{(1 + \psi)} \right), \]

where \(\alpha_1 = \beta \delta (1 + \psi)^{\theta - 1}, \alpha_2 = (1 + n)^{-1}(1 + \alpha_1) \beta (1 + \psi)^{\theta - 1}, \) and \(c \) and \(n \) denote the steady state values of consumption per capita and rate of inflation. Being derived from an optimizing model, steady state money demand is shown to depend on explicit preference parameters.

\(^5\)This function is analogous to the one used in different nonmonetary contexts by Kydland and Prescott (1982) and Eichenbaum, Hansen, and Singleton (1988).

\(^6\)We thus assume the same neutrality of invention property as in Sidszewski (1967). See McCallum (1990) for a discussion of conditions under which this neutrality feature holds.

We compare below the seigniorage implications of the foregoing specification against those of a Cagan demand for money given by

\[m = c \zeta \exp \{ - \omega [\pi/(1 + \pi)] \}, \]

where \(\zeta \) is a constant term and \(\omega \) is a constant semielasticity of money demand with respect to \(\pi/(1 + \pi) \).\(^7\) This comparison is of interest because of the central role of this money demand function in most previous research on seigniorage under high inflation.

Assuming that the parameters in eq. (8) are invariant with respect to steady state changes in the rate of inflation, we calculate from (8) the absolute value of the elasticity of money demand with respect to a steady state change in the inflation rate as

\[\eta = \left| \frac{\partial \pi}{\partial m} \right| = \left[(1 + \pi)(1 + n)(1 + \psi) \right] \left(1 + \frac{\pi}{(1 + \pi)} \right). \]

According to the model, the inflation elasticity of money demand depends on the underlying parameters and on the rate of inflation; the exact form of this dependence is explored below using values of estimated parameters. The elasticity of the semilogarithmic demand for money with respect to \(\pi/(1 + \pi) \) is given by \(\omega \pi/(1 + \pi) \), and the elasticity with respect to \(\pi \) is \(\omega \pi^2/(1 + \pi)^2 \).

In order to explore the present model's implications for seigniorage, notice that government's revenue from monetary base creation is given by

\[S_t = \left(\frac{H_t - H_t-1}{H_t} \right) \left(\frac{F_t}{H_t} \right), \]

where \(H \) is the monetary base. Seigniorage per capita, denoted by \(\bar{S} \), can be written as

\[\bar{S}_t = \left(1 - \frac{H_t-1}{H_t} \right) h_t, \]

where \(h \) denotes the monetary base in real per capita units. In the steady state equilibrium considered here the gross rate of change of the monetary base \((H_t/H_{t-1}) \) is equal to \((1 + n)(1 + \psi)(1 + \pi) \). Substituting for \(h_t \), the derived demand for real monetary base from eq. (8), and dividing by GNP per capita we

\(^7\)For a derivation of a Cagan-type demand for money from utility maximization see Calvo and Leiderman (1992). Notice that the inflation variable enters as \(\pi/(1 + \pi) \) and not as \(\pi \) (as in many empirical studies).
get the following expression for the ratio of seigniorage to GNP in steady state (denoted by SR: seigniorage ratio):

$$SR = \left[1 - \frac{1}{(1 + \eta)(1 + \phi)(1 + \pi)} \right]$$

$$\left[\frac{\psi}{1 + \gamma} \left(1 + \frac{\delta}{1 + \phi} \right) \psi \kappa \left(1 + \alpha_1 - \frac{2\alpha_2}{1 + \pi} \right) \right],$$

(10)

where ψ is the ratio of consumption to GNP and κ is the inverse of the money supply multiplier. When the inflation rate accelerates there are two conflicting forces operating on SR: the inflation–tax rate increases but at the same time there is a decrease in the tax base (i.e., in the demand for real balances). A sufficient condition for an increasing SR with respect to π is that $[1 - \beta(1 + \phi)^2] > 0$; a condition that is always met for configurations involving $\beta < 1$, $\phi > 0$, and $0 \leq \psi$.

For the Cagan specification of the demand for money, the steady state ratio of seigniorage to GNP is computed by replacing the second set of squared brackets in the right-hand side of (10) with the expression $\psi \kappa \exp \left(-\omega \eta / (1 + \pi) \right)$.

To calculate the welfare costs of various steady state levels of inflation we substitute eq. (9) into (5) and compute the percentage decrease in consumption per capita that would generate the same welfare loss as that from moving from $\pi = 0$ to a given $\pi > 0$. This welfare loss, expressed as a percentage of GNP and denoted by WL, is given by

$$WL = \psi \left\{ (1 + \alpha_0 - 2\alpha_2(1 + \pi)^{-1}) / (1 + \alpha_0 - 2\alpha_2) \right\},$$

(11)

Welfare cost calculations based on Cagan's demand for money generally measure the change in the area under the demand function due to a move from stable prices to a positive π.11

3. Estimation

From eqs. (3) and (4), we define the disturbances of the model as

$$d_{2t+2}(\sigma) = \beta \left[\frac{U_2(t + 1)}{U_2(t)} \right] \left(1 + \frac{\alpha_1}{1 + n_{t+1}} \right) - 1,$$

$$+ \beta^2 \delta \left[\frac{U_2(t + 2)}{U_2(t)} \right] \left(1 + \frac{\alpha_1}{1 + n_{t+1}} \right) - 1,$$

(12)

Substituting into these equations our parameterization of marginal utilities [i.e., eqs. (6) and (7)] delivers the two-equation system to be estimated, whose parameter vector is $\sigma = (\beta, \gamma, \theta, \phi)$: Notice that the Euler eqs. (3) and (4) imply the orthogonality conditions $E(d_{2t+2}(\sigma); z_{\rho}) = 0$, for $i = 1, 2$, where z_{ρ} is any variable that belongs to the information set at time t, and σ_0 is the true value of the parameter vector σ.

Based on these orthogonality conditions, we estimate the parameter vector by applying Hansen's (1982) Generalized Method of Moments (GMM) to quarterly data for Israel covering the period 1970:1 to 1988:11. We impose the constraints that the weighting matrix is positive definite and that the disturbances follow a first-order moving average process (due to the presence of a two-period-ahead forecast error in the Euler equations).12

The aggregate time series used are as follows. Consumption is measured by total private consumption spending from the National Accounts. We also used a measure for purchases of nondurables and services as an alternative for the total measure. Money is defined as the standard M1 or alternatively as the monetary base. All nominal variables are deflated by the relevant consumption deflators, and per capita measures are obtained by dividing aggregates by the existing population. The nominal interest rate is the quarterly lending rate charged by banks; results for the average nominal return on indexed government bonds are discussed in footnote 15. The inflation rate is measured by the percentage change in the relevant consumer price deflator.13

In estimating the model, we first used the following vector of instrumental variables: $z_{l+1} = [1, c_t, c_{t-1}, m_t, m_{t-1}, (1 + r_{t-1})/(1 + \pi_t)]$. With these four instruments and two equations, there are eight orthogonality conditions. Since there are four parameters to be estimated, there are four overidentifying restrictions. In addition, we explored the impact of allowing an additional lag of our instruments by using the vector $z_{l+2} = [z_{l+1}, z_{l+1}]$.

Results are displayed in table 1. For each vector of instruments, we report four sets of estimates corresponding to two alternative definitions of consumption

11Den Haan (1990) shows that a welfare measure based on an expression such as eq. (11) leads to very similar answers as the measure that calculates the area under the steady-state money demand function of the structural model.

12In estimating the weighting matrix, we apply the modified Durbin procedure developed by Eichenbaum, Hansen, and Singleton (1988, app. B). We thank Masao Ogaki for providing us the GMM program which we used along with Gauss v. 1.49.

13The quarterly lending rate is the interest rate most widely used in Israel as an indicator of conditions in the money market and of the stance of monetary policy. Other interest rates have typically moved together with movements in this rate. The data source for the consumption quantity and price variables is the National Accounts publication by the Israeli Bureau of Statistics. The data on monetary aggregates and asset returns are from the data bank of the Bank of Israel.
Z. Eckstein and L. Leiderman, Seigniorage and the welfare cost of inflation (total and nondurables plus services) and two alternative definitions of money (M1 and the monetary base). In each case we report the minimal value of the objective function J_T, which, as shown by Hansen (1982), is a chi-square test statistic for the validity of the model's overidentifying restrictions.14

The parameter estimates for β and γ are economically meaningful and are quite similar, and large relative to their estimated standard errors, across the different systems that were estimated. Most estimated values of β are below unity and most estimates of γ are around 0.05. It turns out that the estimates for θ and δ do vary across the eight systems that were estimated. Although some such variation arises from the alternative time series used for consumption and money, the main differences are due to the choice of instruments. Most of the estimated values for θ are negative and range from a low of -5.5 to a high of 1.0. The former points to a high relative risk aversion coefficient and to a low intertemporal elasticity of substitution; the latter implies nonconceivity utility. While the estimated values of δ under the z1 instrument vector are positive and range from 0.29 to 0.57, the parameter estimates under the z2 instrument vector are negative.

The J_T statistics for the model estimated with total consumption are small relative to the degrees of freedom for the z1 instrument vector, but large relative to the degrees of freedom for the z2 instrument vector. An opposite pattern holds for estimates obtained under the nondurables plus services definition of consumption. In the case of four out of the eight estimated systems the J_T statistics indicate that the model's overidentifying restrictions are not rejected by the sample information at standard significance levels.5 Overall, the extent to which the model's overidentifying restrictions are (or are not) rejected by the data depends on the definition of consumption and the choice of instruments. Hence, it is difficult to reach unambiguous conclusions regarding the empirical validity of the restrictions implied by the various specifications of the model implemented on the present sample.

14Time trend regressions (with correction for first-order serial correlation) for the instrumental variables and the variables entering the Euler equations generally indicate lack of significant trends. This provides some indication of sample stationarity of these variables. The only exception is the $(1 + r_{t-1})/\beta$ variable which has a trend coefficient of 0.0011 with a standard error of 0.00036.

15The table in the appendix provides evidence on the robustness of the results in relation to the asset return that is used in estimating the model: the interest rate used in table 1 is the return on government indexed bonds. Since we had data on the latter only up until 1980.1, we reestimated system 1 of table 1 for this sample and compared the results with those with the alternative asset return. It turns out that the estimates of β and γ are quite insensitive to the asset return. Yet for θ and δ we obtain somewhat lower estimates (in absolute value) when the return on government indexed bonds is used. This return also results in lower J_T statistics, thus providing more supporting evidence for the overidentifying restrictions of the model than when the interest rate of table 1 is used. All in all, we conclude that the results are not markedly sensitive to the choice of the asset return (among the two alternatives considered).
4. Implications for seigniorage and the welfare cost of inflation

Based on the parameter estimates obtained in the previous section, we now explore the extent to which the model accounts for the observed stability of annual seigniorage in spite of large fluctuations in the annual rate of inflation. Then, we quantitatively assess the welfare cost of inflation. We do this by comparing, under the model's parameters, alternative hypothetical steady states under different rates of inflation.¹⁶

For our calculations of seigniorage and welfare cost of inflation we use the following parameter values:

$$\beta = 0.987, \gamma = 0.05, \psi = 0.61, n = 0.0058, \phi = 0.008,$$

where the parameter values for β and γ are chosen from the estimates of the previous section and those for ψ, n, and ϕ correspond to the quarterly sample means of the share of consumption in GNP, the rate of change of population, and the rate of change of consumption per capita, respectively. Since the econometric results indicate that the estimated risk aversion parameter θ is sensitive to the choice of instruments and data, we experimented with three main values: -5.6, -1.5, and 0.0 (the latter corresponds to the case of log-utility). Similarly, our main calculations used $\delta = 0.3$, but we also checked the sensitivity of the results by using the alternative values $\delta = -0.3$ and $\delta = -0.7$.

Tables 2 and 3 report the results for seigniorage as a percentage of GNP, for the inflation rate elasticity of money demand, and for the welfare cost of inflation. Fig. 1 depicts the implied seigniorage ratio for various rates of inflation and under three alternative values of the risk aversion parameter θ. There are four main features of these seigniorage calculations.

First, as evident from tables 2 and 3, the ratio of seigniorage to GNP is an increasing function of the rate of inflation. That is, government can raise more revenue by increasing monetary base growth and inflation. This finding does not support the notion that inflation rates in Israel in the mid-eighties exceeded the revenue-maximizing rate.

Second, although the gains to government from increasing inflation from 0 to 10 percent per quarter are of about 1.5 to 2.0 percent of GNP, the gains from further increasing inflation are of a small order of magnitude. For example, shifting from a quarterly rate of inflation of 10 percent to 70 percent generally results in an increase in revenue of only 1 percent of GNP. As shown in fig. 1, for low rate of inflation SR markedly increases with increases in π, but then SR rapidly reaches an asymptote. It is this flatness of SR with respect to π that

¹⁶ Clearly, there are limitations to comparisons restricted only to steady states. In many models the amount of seigniorage revenue that can be collected out of steady state markedly differs from that in a steady state. In future work, we plan to explore the implications of our framework for the dynamics of seigniorage out of steady state.
Fig. 1. *Seigniorage as a percentage of GNP.* The plots depict the implications of the model for the seigniorage ratio [see eq. (10)] for various rates of inflation and under three alternative values of the risk aversion parameter θ. Other parameters are set at the values used in section 4 of the paper.

Table 2

<table>
<thead>
<tr>
<th>π (quarterly)</th>
<th>$\theta = -5.6$</th>
<th>$\theta = -1.5$</th>
<th>$\theta = 0.0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ</td>
<td>η</td>
<td>WL</td>
<td>σ</td>
</tr>
<tr>
<td>0.00</td>
<td>0.0064</td>
<td>0.00</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.0123</td>
<td>0.0104</td>
<td>0.14</td>
<td>0.0046</td>
</tr>
<tr>
<td>0.0241</td>
<td>0.0132</td>
<td>0.24</td>
<td>0.0085</td>
</tr>
<tr>
<td>0.05</td>
<td>0.0174</td>
<td>0.37</td>
<td>0.0153</td>
</tr>
<tr>
<td>0.10</td>
<td>0.0219</td>
<td>0.50</td>
<td>0.0250</td>
</tr>
<tr>
<td>0.15</td>
<td>0.0243</td>
<td>0.56</td>
<td>0.0318</td>
</tr>
<tr>
<td>0.20</td>
<td>0.0258</td>
<td>0.58</td>
<td>0.0370</td>
</tr>
<tr>
<td>0.25</td>
<td>0.0274</td>
<td>0.58</td>
<td>0.0434</td>
</tr>
<tr>
<td>0.30</td>
<td>0.0279</td>
<td>0.58</td>
<td>0.0459</td>
</tr>
<tr>
<td>0.35</td>
<td>0.0294</td>
<td>0.55</td>
<td>0.0543</td>
</tr>
<tr>
<td>0.40</td>
<td>0.0302</td>
<td>0.50</td>
<td>0.0602</td>
</tr>
<tr>
<td>9% + 0.00</td>
<td>0.0325</td>
<td>0.00</td>
<td>0.1431</td>
</tr>
</tbody>
</table>

*SR denotes seigniorage as a percentage of GNP, η denotes the elasticity of money demand with respect to inflation, and WL is the welfare cost of inflation as a percentage of GNP. See text for further explanations.

The figures in this table were calculated under the following parameter values: $\beta = 0.987$, $\delta = 0.3$, and $\gamma = 0.05$.

401
Seigniorage ratio, money demand elasticity, and welfare cost of inflation: Additional results.

<table>
<thead>
<tr>
<th>(\pi) (quarterly)</th>
<th>(SR)</th>
<th>(\eta)</th>
<th>(WL)</th>
<th>(\delta = -0.3)</th>
<th>(\delta = -0.7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.0062</td>
<td>0.000</td>
<td>0.0000</td>
<td>0.056</td>
<td>0.000</td>
</tr>
<tr>
<td>0.0123</td>
<td>0.0100</td>
<td>0.14</td>
<td>0.0046</td>
<td>0.061</td>
<td>0.0468</td>
</tr>
<tr>
<td>0.0241</td>
<td>0.0127</td>
<td>0.24</td>
<td>0.0085</td>
<td>0.0116</td>
<td>0.0085</td>
</tr>
<tr>
<td>0.05</td>
<td>0.0168</td>
<td>0.37</td>
<td>0.0153</td>
<td>0.0152</td>
<td>0.0153</td>
</tr>
<tr>
<td>0.10</td>
<td>0.0211</td>
<td>0.50</td>
<td>0.0250</td>
<td>0.0192</td>
<td>0.0250</td>
</tr>
<tr>
<td>0.15</td>
<td>0.0234</td>
<td>0.56</td>
<td>0.0318</td>
<td>0.0213</td>
<td>0.0320</td>
</tr>
<tr>
<td>0.20</td>
<td>0.0249</td>
<td>0.58</td>
<td>0.0370</td>
<td>0.0226</td>
<td>0.0370</td>
</tr>
<tr>
<td>0.28</td>
<td>0.0264</td>
<td>0.58</td>
<td>0.0434</td>
<td>0.0240</td>
<td>0.0434</td>
</tr>
<tr>
<td>0.32</td>
<td>0.0269</td>
<td>0.58</td>
<td>0.0459</td>
<td>0.0244</td>
<td>0.0459</td>
</tr>
<tr>
<td>0.50</td>
<td>0.0283</td>
<td>0.55</td>
<td>0.0543</td>
<td>0.0257</td>
<td>0.0543</td>
</tr>
<tr>
<td>0.70</td>
<td>0.0291</td>
<td>0.50</td>
<td>0.0602</td>
<td>0.0264</td>
<td>0.0602</td>
</tr>
<tr>
<td>9E + 090</td>
<td>0.0314</td>
<td>0.00</td>
<td>0.1430</td>
<td>0.0285</td>
<td>0.0873</td>
</tr>
</tbody>
</table>

*See notes to Table 2. Here we set \(\beta = 0.987 \), \(\theta = -5.6 \), and \(\tau = 0.05 \).

\(WLC \) is the welfare cost calculated from a Cagan-type money demand with an inflation rate semi-elasticity of \(-5.0\).

accounts in our model for the observed stability of the seigniorage to GNP ratio despite wide fluctuations in the rate of inflation. The calculated values for \(SR \) under mild and high inflation correspond well with the actual figures, generally between 2 to 3 percent of GNP, observed in Israel in the first half of the eighties.

Third, the results for the seigniorage ratio are not very sensitive to the values chosen for the \(\theta \) and \(\delta \) parameters — namely, those parameters which were not precisely estimated in the econometric work. Thus, the calculated values of \(SR \) under a quarterly rate of inflation of 28 percent (as between 1980 to 1984 on average) reported in tables 2 and 3 range from a low of 2.4 percent of GNP to a high of about 3.0 percent. Notice that the higher the degree of relative risk aversion, the lower is the ratio of seigniorage to GNP (see fig. 1), and the lower is the elasticity of money demand with respect to steady state changes in the rate of inflation. Growth is clearly important for these effects; if there was no growth, then the elasticity of money demand with respect to steady state inflation would not be sensitive to a change in \(\theta \). Also, other things equal, lower values of \(\delta \) result in lower values of \(SR \).

Fourth, the model's implications for the relation between seigniorage and inflation markedly differ from those based on a Cagan semi-log demand for money. Fig. 2 plots, for the period 1980–1986, the actual data on seigniorage.

\[\text{Since the discussion focuses on steady states, we express the figures on seigniorage as a five-year moving average of the actual data reported by Meridor (1988, table 3). That is, seigniorage at time } t \text{ is the average of values from } t-2 \text{ to } t+2. \]
along with the predictions of SR based on our model and a Cagan-type model. For the latter, we used a semielasticity of money demand of -5.0, which conforms well with estimates from previous empirical work on money demand in Israel, and we normalized the constant term so as to give rise to the same SR for 1980 as our model's. 18 The simulation for SR under a semilog demand for money indicates that the ratio of seigniorage to GNP should have decreased from 1981 to 1984, as inflation accelerated, and should have sharply increased thereafter. In contrast, the actual figures for SR (plotted with solid lines in fig. 2) indicate that it slightly increased from the early to mid-eighties, and then decreased along with disinflation. In a broad sense, the relatively flat relation between SR and inflation that arises from the parameterization of our model (see fig. 2) matches the actual data more closely than the semilog money demand alternative.19

Tables 2 and 3 also report values of the inflation rate elasticity of money demand that are implied by the various configurations of the underlying parameters. Notice that this elasticity first increases with the rate of inflation, reaches a maximum, and then decreases with further increases in inflation. For high inflation rates such as in the mid-eighties, the calculated elasticity is of about -0.6, which conforms quite well with available empirical findings.20 By virtue of the underlying microfoundations of the present model, it is possible to relate the inflation rate elasticity of money demand to a primitive parameter such as the degree of risk aversion. We find that the higher the degree of risk aversion, the lower is the inflation elasticity of money demand.

In order to provide some measure of the precision of the foregoing calculations for the seigniorage ratio and for the inflation rate elasticity of money demand, we computed simulated standard errors for these variables assuming randomly generated values of θ and δ — namely, the two parameters that were quite imprecisely estimated in table 1. The simulated standard errors are given in table 4. We calculated them by using Monte Carlo methods to generate values for these two parameters using a normal distribution with means of $\theta = -5.6$ and $\delta = 0.3$ and standard errors of 1.262 and 0.1, respectively (see table 1), and 500 randomly generated observations. Other parameter values are set as in tables 2 and 3. The simulated standard errors for the seigniorage ratio are quite

18 Bruno (1986) also used in several of his calculations for seigniorage money demand semielasticities of about -5.0. We have checked this number by estimating, with our data, a Cagan demand for money in Israel for the period 1970:III to 1980:III. The estimated semi-elasticity is -5.04, with estimated standard error of 0.959.

19 As indicated in the Introduction, flatness of the seigniorage ratio with respect to changes in the rate of inflation is not unique to the case of Israel.

20 This value is quite close to the -0.5 elasticity of inventory (or transactions) models of the demand for money. In their study on money demand in Israel, Leiderman, and Marros (1985) report a long-run inflation rate elasticity of money demand of -0.41 for the period October 1978 to December 1981, using a semilog Cagan-type specification of money demand.
Table 4
Simulated standard errors for π and η.

<table>
<thead>
<tr>
<th>π (quarterly)</th>
<th>Std. error for π</th>
<th>Std. error for η</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.0123</td>
<td>0.0008</td>
<td>0.0008</td>
</tr>
<tr>
<td>0.0241</td>
<td>0.0009</td>
<td>0.0009</td>
</tr>
<tr>
<td>0.05</td>
<td>0.0009</td>
<td>0.0009</td>
</tr>
<tr>
<td>0.10</td>
<td>0.0008</td>
<td>0.0008</td>
</tr>
<tr>
<td>0.15</td>
<td>0.0007</td>
<td>0.0007</td>
</tr>
<tr>
<td>0.20</td>
<td>0.0006</td>
<td>0.0006</td>
</tr>
<tr>
<td>0.28</td>
<td>0.0006</td>
<td>0.0006</td>
</tr>
<tr>
<td>0.32</td>
<td>0.0004</td>
<td>0.0004</td>
</tr>
<tr>
<td>0.50</td>
<td>0.0003</td>
<td>0.0003</td>
</tr>
<tr>
<td>0.70</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
<tr>
<td>9E + 090</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

*Standard errors calculated through Monte Carlo simulations using a normal distribution with means of $\theta = -5.6$ and $\delta = 0.3$ and standard errors of 1.262 and 0.1, respectively (see table 1), and 500 randomly generated observations.

low, and are generally no more than 10 percent of the value of π. A similar finding holds for simulated standard errors of the inflation elasticity of money demand.

For each set of parameters the third column of tables 2 and 3 reports the welfare costs, as percents of GNP, associated with increasing inflation from zero to a positive rate. We use eq. (11) to compute the decrease in per capita consumption (expressed as percent of GNP) that would generate the same welfare loss as that from increasing inflation from zero to a given rate in the tables. Notice that the welfare cost of inflation depends on the degree of risk aversion. Other things equal, the higher the degree of risk aversion, the lower is the welfare cost of inflation. From table 2 we see that a shift from zero inflation to an annual rate of inflation of 10 percent (i.e., 2.41 percent per quarter) results in a loss in utility equivalent to about 1 percent of GNP. This is more than double some of the estimates for the United States, such as the 0.28 percent of GNP estimate of McCallum (1989), the 0.3 and 0.45 percent of GNP figures reported by Fischer (1981) and Lucas (1981), respectively, and the 0.39 percent of GNP figure computed by Cooley and Hansen (1989). The welfare cost of

5. Concluding remarks

In this paper, we found that the steady state quantitative implications of a simple dynamic model of money in the utility function are generally compatible with the observed stability of seigniorage in Israel. That is, while inflation fluctuated in the sample between double-digit figures to 500 percent per year, the ratio of seigniorage to GNP remained between 2 to 3 percent. Although changes in inflation were not accompanied by marked fluctuations in seigniorage, they had a strong impact on welfare in the steady state. Based on the model's estimated parameters, the steady state welfare cost of 10 percent inflation is about 1 percent of GNP, and the welfare cost of an inflation rate of 168 percent per year (the average in Israel between 1980 and 1984) is about 4 percent of GNP.

The analysis could be extended in several directions. First, our quantitative analysis of seigniorage and of the welfare cost of inflation was confined to steady states. It is well known that in episodes of high and volatile inflation, the actual levels of seigniorage revenue and of the welfare cost of inflation may well differ from steady state levels. Thus, caution is suggested in regarding our quantitative findings as definitive, as it would be desired to extend the analysis to take into account transitional factors which give rise to these differences.

Second, it seems plausible that the calculation of welfare costs of inflation may depend on the extent to which the distortions induced by other taxes are affected by changes in the inflation tax. Some progress on this issue has been made recently by Cooley and Hansen (1990), work in the context of a real business cycle model how the distortions associated with the inflation tax compare with the distortions arising from taxes on labor and capital income and on consumption.

Third, the analysis could be extended to allow for potential nonneutralities of money and inflation both in and out of steady states. Previous research indicates that changes in the rate of inflation may affect the allocation of time between work and leisure as well as the profitability of capital accumulation. Explicitly

1Cooley and Hansen (1989) studied the effects of the inflation tax in the context of a real business cycle model in which money is introduced via cash-in-advance constraints. Notice that in their framework, monetary velocity is invariant with respect to changes in the rate of inflation. Den Haan (1990), Gillman (1991), and Imrohoroglu and Prescott (1993) look at the welfare costs of inflation in models with considerably more substitution possibilities than Cooley and Hansen (1989), and consequently find higher welfare costs of inflation. The welfare cost calculations of McCallum (1989), Fischer (1981), and Lucas (1981) are directly based on the area under the demand curve for money. For a comparison of alternative measures of the welfare cost of inflation, see Gillman (1990).

2All these calculations apply to comparisons of steady states. A more comprehensive assessment of the welfare costs of inflation would have to take into account the distortions and costs imposed by inflation out of steady state.
taking into account these effects may have a nonnegligible impact on the
calculations of seigniorage and of the welfare cost of inflation that are based on
the assumption of neutrality.

Appendix

<table>
<thead>
<tr>
<th>Parameters</th>
<th>CM</th>
<th>CNM</th>
<th>CB</th>
<th>CNB</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>1.038</td>
<td>1.001</td>
<td>1.025</td>
<td>1.023</td>
</tr>
<tr>
<td></td>
<td>(0.019)</td>
<td>(0.014)</td>
<td>(0.014)</td>
<td>(0.010)</td>
</tr>
<tr>
<td>γ</td>
<td>0.055</td>
<td>0.052</td>
<td>0.042</td>
<td>0.042</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.001)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>θ</td>
<td>-4.720</td>
<td>-3.551</td>
<td>-2.609</td>
<td>-2.231</td>
</tr>
<tr>
<td></td>
<td>(0.640)</td>
<td>(1.202)</td>
<td>(0.600)</td>
<td>(0.919)</td>
</tr>
<tr>
<td>δ</td>
<td>0.233</td>
<td>0.388</td>
<td>0.510</td>
<td>0.587</td>
</tr>
<tr>
<td></td>
<td>(0.067)</td>
<td>(0.142)</td>
<td>(0.202)</td>
<td>(0.225)</td>
</tr>
<tr>
<td>ρ_{1}</td>
<td>7.472</td>
<td>10.931</td>
<td>8.311</td>
<td>7.591</td>
</tr>
<tr>
<td></td>
<td>(0.113)</td>
<td>(0.027)</td>
<td>(0.307)</td>
<td>(0.108)</td>
</tr>
<tr>
<td>$\rho_{d(1, d2)}$</td>
<td>0.706</td>
<td>0.533</td>
<td>0.300</td>
<td>0.275</td>
</tr>
</tbody>
</table>

Return: Yield on government indexed bonds

<table>
<thead>
<tr>
<th>Parameters</th>
<th>CM</th>
<th>CNM</th>
<th>CB</th>
<th>CNB</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>0.997</td>
<td>1.000</td>
<td>1.012</td>
<td>0.984</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.005)</td>
<td>(0.004)</td>
<td>(0.007)</td>
</tr>
<tr>
<td>γ</td>
<td>0.049</td>
<td>0.043</td>
<td>0.041</td>
<td>0.034</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.024)</td>
</tr>
<tr>
<td>θ</td>
<td>1.061</td>
<td>-1.143</td>
<td>-0.831</td>
<td>-0.966</td>
</tr>
<tr>
<td></td>
<td>(0.058)</td>
<td>(0.076)</td>
<td>(0.377)</td>
<td>(0.673)</td>
</tr>
<tr>
<td>δ</td>
<td>-0.394</td>
<td>0.149</td>
<td>0.150</td>
<td>0.239</td>
</tr>
<tr>
<td></td>
<td>(0.264)</td>
<td>(0.103)</td>
<td>(0.071)</td>
<td>(0.168)</td>
</tr>
<tr>
<td>J_{1}</td>
<td>3.669</td>
<td>3.985</td>
<td>3.998</td>
<td>4.071</td>
</tr>
<tr>
<td></td>
<td>(0.453)</td>
<td>(0.408)</td>
<td>(0.406)</td>
<td>(0.396)</td>
</tr>
<tr>
<td>$\rho_{d(1, d2)}$</td>
<td>0.312</td>
<td>0.537</td>
<td>0.440</td>
<td>0.265</td>
</tr>
</tbody>
</table>

$*$ See notes to Table 1 in text. The instrument set z_{d2} was used in estimating the model. See also footnote 15.

References

Bental, B. and Z. Eckstein, 1990, The dynamics of inflation with constant deficit under expected
regime change, Economic Journal 100, 1245–1260.
Bruno, M., 1986, Israel's stabilization: The end of the 'lost decade', Working paper, June (M. Falk
Institute, Jerusalem).

Z. Eckstein and L. Leidman, Seigniorage and the welfare cost of inflation

Bruno, M. and S. Fischer, 1990, Seigniorage, operating rules, and the high inflation trap, Quarterly
Calvo, G.A. and L. Leidman, 1992, Optimal inflation tax under precommitment: Theory and
Review 79, 733–748.
paper, Aug. (University of Rochester, Rochester, NY).
Den Haan, W.J., 1990, The optimal inflation path in a Srausski-type model with uncertainty,
Drazen, A. and E. Helpman, 1990, Inflationary consequences of anticipated macroeconomic policies,
Eckstein, Z. and L. Leidman, 1988, Estimating intertemporal models of consumption and money
holdings and their implications for seigniorage and inflation, Working paper (Tel-Aviv University,
Tel-Aviv).
Eichenbaum, M.S., L.P. Hansen, and K.J. Singleton, 1988, A time series analysis of representative
agent models of consumption and leisure choice under uncertainty, Quarterly Journal of
Economics 103, 51–78.
Feenstra, R.C., 1986, Functional equivalence between liquidity costs and the utility of money,
in barter and monetary economies: An empirical analysis, Journal of Monetary Economics 23,
431–452.
Fischer, S., 1981, Towards an understanding of the costs of inflation, Carnegie–Rochester Confer-
ence Series on Public Policy 15, 5–41.
(Emory University, Atlanta, GA).
Gillman, M., 1991, The welfare costs of inflation in a cash-in-advance economy with costly credit,
Working paper (Emory University, Atlanta, GA).
Hansen, L.P., 1982, Large sample properties of generalized method of moment estimators, Econo-
metrica 50, 1029–1054.
rational expectations models, Econometrica 50, 1269–1286.
arrangements, Federal Reserve Bank of Minneapolis, Quarterly Review, Summer, 3–10.
Series on Public Policy 22, 147–196.
Kydland, F.E. and E.C. Prescott, 1982, Time to build and aggregate fluctuations, Econometrica 50,
1345–1370.
Leidman, L. and A. Marom, 1985, New estimates of the demand for money in Israel, Bank of Israel
Economic Review 13, 17–33.
Lucas, R.E., Jr., 1981, Discussion of Stanley Fischer, Towards an understanding of the costs of
Lucas, R.E., Jr., 1986, Models of business cycles, Yejo Johnsson lectures (Helsinki).
Marshall, D.A., 1988, Inflation and asset returns in a monetary economy: Empirical results,
Working paper, Nov (Northwestern University, Evanston, IL).
(MIT, Cambridge, MA).
of Chicago, Chicago, IL).
Poterba, J.M. and J. Rosemberg, 1987, Money in the utility function: An empirical implementation,
in: W.A. Barnett and K.J. Singleton, New approaches to monetary economics (Cambridge